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Abstract—For effective mobile robots we need a concise
yet adequately descriptive mechanism for representing their
surroundings. Traditionally 2D occupancy grids have proven
effective for task such as SLAM, path planning and obstacle
avoidance.

Applying this to 3D maps requires consideration due to
the large memory requirements of the resulting dense arrays.
Approaches to address this, such as octrees and occupied voxel
lists, take advantage of the relative sparsity of occupied voxels.
We enhance the occupied voxel list representation by filtering
out those voxels that are on planar sections of the environment
to leave edge-like voxels. To do this we apply a structure tensor
operation to the voxel map followed by a classification of the
eigenvalues to remove voxels that are part of flat regions such as
floors, walls and ceilings. This leaves the voxels tracing the edges
of the environment producing a wire-frame like model. Fewer
edge voxels require less memory and enable faster alignment.

We compare the performance of scan-to-map matching of
extracted edge voxels with that of the corresponding full 3D
scans. We show that alignment accuracy is preserved when using
edge voxels, while achieving a five times speedup and reduced
memory requirements, compared to matching with all occupied
voxels. It is posited that these edge voxel maps could also be
useful for appearance based localisation.

Index Terms—voxels; edge detection; mapping; localisation;
SLAM

I. INTRODUCTION

Indoor environments are typically full of planar surfaces

(floors, walls, ceilings, furniture, etc.), and consequently nu-

merous researchers have explored plane-based mapping [1].

There are limitations to this assumption, where a plane-based

approach is not appropriate: natural outdoor environments,

building with curved surfaces, and cluttered scenes, for exam-

ple those found in search and rescue scenarios. Although the

use of planes as landmarks can be a good way of compressing

map information, feature points and edges are more effective

at constraining a robot’s pose than an observed planar surface.

We propose an extension to voxel based mapping which

accomplishes mapping by aligning edges voxels extracted

from a 3D scan or range image to an edge voxel map.

An exciting aspect of edge voxel maps is that we can

localise range and image sensors with the same map.

For many structured environments, considering only edge

voxels removes the dominant planar surfaces in the scene:

floors, walls and ceilings. The remaining voxels are those that

lie along the intersection of planes or in cluttered regions.

Fig. 1. Examples of scans from the thermolab dataset (left) and the
corresponding edge voxels extracted from them (right).

Whilst feature-based SLAM has proven effective in many

situations, it relies on successful feature extraction and iden-

tification that can not be guaranteed. Scan-to-map matching

approaches do not require feature extraction or association

and therefore are immune to this problem. However, they

require much more memory and computation to perform. Our

proposed approach avoids both of these problems by reducing

the memory and computational load of scan-to-map matching

while leveraging pose-invariant structures in the environment.
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II. BACKGROUND MATERIAL/RELATED WORK

The edges that manifest in images are regions of high

contrast that usually follow a path in the image. These edges

are due to four main reasons.

• Appearance

– Texture change — Abrupt change in surface colour

– Lighting change — Sharp shadows

• Geometry

– Range discontinuity — Abrupt change in distance

from the observer

– Surface normal change — E.g. intersection of two

planes

It is important to appreciate the distinction in the causes

of image edges. Texture change and illumination edges are

not observed by 3D sensors. So the remaining geometric

edge types are range discontinuities and abrupt surface normal

changes. Surface normal changes are pose invariant, however

edges due to range discontinuities are not. For instance,

consider a cylinder and the range discontinuity edge of the

curved source of the cylinder. The position of this edge varies

in 3D space as the position of the observer shifts.

In the same way that edges in images require a fairly flexible

definition, a rigorous definition of edge voxels is somewhat

elusive. For instance a definition could be those voxels that

do not contain points that lie in a plane, however this would

classify voxels on a curved surface (such as a cylinder) as

edges. A more robust definition might describe edge voxels as

lying on a smooth manifold in 3D space, but the quantised

nature of a voxel grid makes this description flawed. On

account of this, we assess our edge extraction techniques on

a fit-for-purpose basis, rather than by comparison to ground

truth, which may be subjective.

Sparse maps can be made that contain only positions of

landmarks or features that aid in localisation, but denser maps

consisting of point clouds or occupancy grids can also enable

obstacle avoidance and path planning. Denser maps, however,

require more memory to store and are more computationally

expensive to build.

The following list summarises these maps in descending

sparsity and places the edge voxel maps into context of the

broader research. Sparser maps are smaller, easier to store and

quicker to process however they do not work with as wide a

range of robot tasks.

• 3D occupancy grid — Extension of 2D occupancy grids

• Occupied voxel list — Occupied voxels only

• Edge voxel map — Non planar voxels

• Feature map — List of point features and their covari-

ances

Edges have been previously incorporated into feature maps,

but no work to our knowledge approaches edges in 3D

mapping as a subset of the occupancy grid. In [2] they

extend conventional landmark based SLAM to incorporate

edge information by the extraction of edgelets from the scene

image. However, the resulting map is still a subset of the edge

pixels visible in the scene. The Point Cloud Library (PCL)

[3] also includes a great deal of functionality for working

with point clouds, and extracting planes and feature points.

However, their approach is decidedly tied to a point cloud

representation, and they do not incorporate functionality for

extracting edges from them.

III. METHODS

A. Edge Voxel SLAM

Many contemporary SLAM approaches rely on the success-

ful and reliable extraction of point features or identifiable land-

marks. This reliance on feature detection can be problematic

in certain environments lacking such distinctive landmarks.

Especially in indoor environments whist distinctive points are

sometimes not observable there are usually geometric edge-

like regions such as at the intersection of the walls and floor.

As a last resort full matching of the occupied voxels

is always possible if insufficient edge voxels are detected.

Generating maps of the geometric edge voxels is faster and

requires fewer voxels to express the map at a given resolution,

consequently edge voxel maps require less memory.

The SLAM approach we use to test the efficacy of edge

voxels in a concrete application is based on multi-resolution

occupied voxel lists detailed in [4]. We employ an iterative

voxel based alignment strategy where the scan is first aligned

to the coarsest map resolution. The scan is sampled and then

transformed by the initial guess pose and the number of points

falling inside map voxels counted. The initial pose can be

provided by either odometry or the pose of the previous scan

if they are close enough. Nearby surrounding poses are also

tested and current best pose updated to that with the highest

coincident points in the map. The search proceeds until it

converges on a (quite possibly local) maximum overlap. The

procedure is then performed on the next finest resolution with

voxels of half the width starting with the best pose from

the larger resolution and the best pose found so far adjust

accordingly. This is repeated at all the resolutions stored,

which is typically three to five. For more information regarding

this multi-resolution alignment process see [5].

This procedure can be made faster by reducing the number

of points that need to be considered for each scan, hence the

initial sampling step. By calculating the points that lie in edge

voxels and aligning those to an edge voxel map the alignment

procedure is significantly accelerated whilst requiring less

memory for the storage of the map.

An edge voxel classification algorithm has to be applicable

to both a single 3D range scan as well as a map consisting

of the result of a number of merged 3D scans. Performing

edge voxel extraction on a full map produces better results

due to the greater accuracy and density of the occupied voxels.

The volumetric edge extraction is more accurate when there

is greater information on the occupancy state of surrounding

voxels.

A single 3D scan is limited in range, and will thus contain

points that represent the manifestation of this limitation, and

not actual object boundaries in the environment. The different
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kinds of border points in a scan are enumerated by [6]: obstacle

border points, veil points and shadow border points. A single

scan will have more spurious edge voxels due to occlusion,

boundary shadows and data sparsity at long range. A full map

fuses points from many scans together and can mitigate the

latter two categories, which are viewpoint dependent. This

leaves only legitimate view-invariant object border points.

However, these spurious voxels are often categorised as edges

in structure tensor analysis, and in the sparser edge-extracted

scans, their presence may complicate the scan alignment

process.

There are two points at which to perform edge voxel

extraction, either on a single scan like [6] or on the entire

map. In this work we demonstrate good performance on a

scan by scan basis, which is necessary for real-time operation.

Unfortunately, results in artifact edge voxels arising from

occlusions and sensor noise and a slightly poorer quality edge

map. We anticipate that the edge voxel extraction can be rerun

on a combined map of all occupied voxels to produce a better

quality edge map if required. We process the scans individually

and achieve comparable alignment accuracy to using the full

scans, but our approach to edge extraction can be reapplied

to the full map or iteratively during map building in order to

remove the spurious view-dependent edge voxels.

B. Edge Voxel Extraction

Extracting the edge-like voxels from 3D data can be

performed on either the original point cloud or its voxel

representation. Since a 3D occupancy grid is a 3D structural

analogue of a 2D image, approaching this problem using

a voxel representation permits much of the work from the

computer vision community to be extended to 3D and applied.

Finding edges in 3D is analogous to finding corners in 2D

images. In image processing, a corner is a 0D entity in the

2D image, and for volumetric edge extraction we are looking

for 1D edges throughout a 3D volume. In both cases, this is

a reduction of 2 dimensions. If we consider feature extraction

a method of dimension reduction, then these approaches are

equivalent. By this analysis, determining 1D edges in a 2D

image is equivalent to extracting 2D planes in 3D, both a

dimension reduction of 1D.

On the other hand, if we operate directly on the point

cloud, then algorithms based on Principal Component Analysis

(PCA) can be applied. Groups of points (either within a

voxel, or a point’s k nearest neighbors) can be analysed and

the eigenvalues of the resulting covariance matrix can be

used to determine the planar nature of each point. Points

corresponding to planar regions can be removed from each

scan prior to map matching. For many indoor environments,

in principle this should remove a large number of the occupied

voxels leaving a subset that include geometric edge voxels.

The main advantage of point based metrics is that they can

operate at a higher resolution than occupancy grid approaches.

However, the number of points recorded in the map grows un-

bounded with time. This map growth occurs for a continuously

operating mobile robot even if it does not explore new areas,

making purely point-based approaches unscalable.

Secondly, a voxel grid can encode the difference between

unknown and free space. This information can improve edge

classification in the face of incomplete data. For instance,

apparent edge voxels bordering on unknown regions should

not be classified as edge voxels; it is possible that the neigh-

boring unknown voxels are actually occupied and are as yet

unobserved.

Sources of inspiration for volumetric edge detection come

from the computer image processing literature including Haar

features [7] and bilateral filtering which is mentioned in [6]

and used in [8]. Experiments with many edge extraction meth-

ods (PCA, Difference of Gaussians, template matching, Haar

filter responses) did not produce edge voxels corresponding to

our intuition about them, did not remove planar voxels well

due to noisy point data, or were limited to axis aligned edges.

Instead, we employ an approach based on eigenvalue analysis

of the structure tensor, computed for occupied voxels in a 3D

occupancy grid.

Structure Tensor Analysis

Similar to how PCA can be applied to the original points

we calculate the discrete structure tensor on the 3D volumetric

occupancy grids. The structure tensor describes the size and

direction of the gradients in scalar field surrounding a point

in space. This gradient information is encapsulated in the

eigenvalues and corresponding eigenvectors of this structure

tensor. A large eigenvalue indicates that there is a large local

gradient in the direction of its corresponding eigenvector.

We consider only the eigenvalues to determine whether an

occupied voxel is edge-like.

The Harris corner detection method [9] leverages the 2D

structure tensor to extract edges and corners in images. Anal-

ysis of the 2× 2 structure tensor for an image pixel can allow

its classification as an edge pixel (one large and one small

eigenvalue), a corner (two large eigenvalues), or a pixel that

is not of interest (two small eigenvalues).

Similarly, in three dimensions the relative magnitudes of

the structure tensor eigenvalues permit classification of voxels.

A planar voxel will have one direction with a large gradient

(normal to the plane) and two directions with small gradients

(orthogonal directions in the plane), and will thus have one

large and two small eigenvalues. A line or edge in three

dimensions will be characterized by two directions of large

gradient, and one direction with small gradient (along the

edge). Thus, an edge voxel will have two large and one

small eigenvalues. An isolated region in space will have large

gradients in every direction, and so all of its structure tensor

eigenvalues will be large. Similarly for a homogeneous region,

the gradient will be small in every direction, so all of its

eigenvalues will be small.

There does not appear to be any previous attempts at using

structure tensor analysis for edge detection on voxelized data.

The nearest is the applying the 3D structure tensor to video

data [10], [11].

332



Structure Tensor Derivation

The 3D structure tensor is derived from the weighted sum of

squared differences between shifted volume patches. Consider

a subvolume V of an occupancy grid I and the same volume

shifted by (x, y, z). The weighted sum of squared differences

for that shifted patch, S(x, y, z), is:

S(x, y, z) =
∑
v∈V

w(v)(I(v + (x, y, z))− I(v))2 (1)

where w is some weighting function defined over each voxel v
in the subvolume. Using the Taylor series expansion of I(v+
(x, y, z)):

I(v + (x, y, z)) ≈ I(v) + Ix(v)x+ Iy(v)y + Iz(v)z (2)

this can be simplified to:

S(x, y, z) =
∑
v∈V

w(v)(Ix(v)x+ Iy(v)y + Iz(v)z)
2 (3)

which can be written in matrix form as:

S(x, y, z) ≈ (
x y z

)
A

⎛
⎝ x

y
z

⎞
⎠ (4)

where A is the structure tensor for the original volume:

A =
∑
v∈V

w(v)

⎡
⎣ I2x IxIy IxIz
IxIy I2y IyIz
IxIz IyIz I2z

⎤
⎦ (5)

Computed over a subvolume centered at some voxel p =
(xp, yp, zp) in the occupancy grid, the eigenvalues of the

structure tensor will summarize the gradient structure in that

local neighborhood around p, and can be used to determine if

p is an edge or not.

In order to compute the structure tensor eigenvalues for each

voxel in an occupancy grid, we proceed in the following steps.

The occupancy grid (which is binary) is first pre-smoothed

with a multivariate Gaussian filter, which additionally permits

easy computation of the partial derivatives with Gaussian

partials instead of finite difference estimates. After smoothing

with a kernel having half-width h, the partial x derivative at

a voxel p = (xp, yp, zp) can be computed with:

Ix(p) = −x exp
[
−

(
x2
p

(h2 )
2
+

y2p

(h2 )
2
+

z2p

(h2 )
2

)]
(6)

with the y and z partial derivatives computed similarly. Note,

we ignore the scale factor of the Gaussian derivatives as it

results in a constant factor on the structure tensor that scales

all of the eigenvalues at all voxels equally. Therefore, we omit

this extra computation and incorporate the constant factor into

the threshold for edge voxels.

Then for each occupied voxel p, we consider a k × k × k
neighborhood centered at p (a neighborhood of half-width h
such that k = 2h + 1). For each voxel in that neighborhood,

we use a 3D Gaussian weighting function:

w = exp

[
−

(
x2
p

h
+

y2p
h

+
z2p
h

)]
(7)

and as with the Gaussian derivatives, we omit the scale

factor. This is combined with the previously computed partial

derivatives to determine the entries of the structure tensor at

p.

Eigenvalue Classification

Our approach to selecting edge voxels based on their

eigenvalues is motivated by the physical meaning of the

structure tensor and reinforced by an analysis of real world

scan data. Much like the eigenvalues and eigenvectors of the

covariance matrix in Principal Component Analysis explain

the orthogonal directions of greatest variance in point data,

the eigenvalues and eigenvectors of the structure tensor reveal

the directions of greatest gradient in quantised data. Geomet-

rically, we expect that edge-like structures in the point cloud

data will have two orthogonal directions with large gradients

and one direction along the edge with a small gradient. Thus

we seek the corresponding voxels that have two large structure

tensor eigenvalues and one small one. We enforce this property

by thresholding the eigenvalues for both their magnitudes as

well as the ratio of the middle and largest eigenvalues.

Our motivation for thresholding comes from an analysis

of real world data from the thermolab dataset as shown

in Fig. 2. From the set of all occupied voxels, we select

candidate edge voxels that have their smallest structure tensor

eigenvalue < 0.1 and their middle and largest eigenvalues

> 0.1. We selected this threshold value empirically based

on the histograms; we can see that most voxels pass this

test for the smallest and largest eigenvalues, but it provides

us with some discriminating power at the middle eigenvalue.

This threshold excludes the lowest peak of the distribution

of middle eigenvalues, allowing us to only consider voxel

candidates that have two reasonably large eigenvalues.

The other geometric factor affecting our analysis is the need

for edge voxels to have two large eigenvalues of approximately

equal magnitude. Since a voxel in a planar region could have

a middle eigenvalue > 0.1, but a largest eigenvalue that is

dramatically larger, we compute the ratio of the middle to

largest eigenvalues and threshold that, selecting as edges only

those voxels with a ratio > 0.2. We determined this threshold

value empirically by considering the distribution of the middle

and smallest eigenvalues normalized by the largest (i.e. mid-

dle/largest vs. smallest/largest) as seen in Fig. 3. In this figure,

the vertical axis represents the ratio we are thresholding, and

the color scale goes from zero frequency in navy blue to the

highest frequency in red. The bottom left corner represents

planar voxels whose smallest and middle eigenvalues are very

small relative to the largest. The upper left corner represents

ideal edges where the middle and largest eigenvalues are equal

and both large relative to the smallest. The top right corner

represents corners, isolated points, or homogeneous regions

where all three eigenvalues are approximately the same size.

Since our three eigenvalues are sorted, we do not expect any

in the lower right triangle of the plot. A threshold on the

middle/largest ratio is equivalent to selecting the voxels that

fall into bins above a particular horizontal line.
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Fig. 2. Histogram plots of the smallest (first), middle (center), and largest (last) eigenvalues taken for over the first scan in the thermolab dataset.
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Fig. 3. 2D Histogram plot of middle and smallest eigenvalues normalized
by largest eigenvalue for each voxel in the first scan of the thermolab dataset.
Ideal edges (two large, equal eigenvalues) are in the upper left corner, planes
(one large, two small eigenvalues) are in the bottom left corner, and corners
or isolated/homogeneous regions (three equal eigenvalues) are in the upper
right corner. Here, blue represents the lowest frequency and red represents
the highest frequency (view in color).

By placing the threshold at 0.2, we remove the planar voxels

in the bottom left corner of Fig. 3. Above this threshold,

however, we retain not only the ideal edges and corners, but

the other edge voxels that in real scan data are subject to

noise and sensor limitations and do not have ideal eigenvalues.

Modulating the ratio threshold permits different amounts of

these non-ideal edges to be extracted, resulting in a continuum

of progressively more dense edge scans. Thus the value of this

threshold modulates a tradeoff between scan compression and

the matching accuracy that comes from a fuller scan. From

our experiments, we found that accurate mapping could be

performed across nearly all of this continuum of edge voxel

densities.

We require candidate voxels to pass both the eigenvalue

magnitude and eigenvalue ratio tests in order to be extracted as

an edge voxel. Several examples of scans from the thermolab
dataset are shown in Fig. 1 along with their extracted edge

voxels.

The previous structure tensor approaches to video segmenta-

tion [10], [11] also compute some metrics on the eigenvalues,

but focus more on coherency measures. Wang and Ma [11] do

compute an edge measure(
largest−middle

largest+middle

)2

that also seeks to capture the relationship of the largest two

eigenvalues, but they provide no motivation for that particular

metric, and instead we chose our system based on the above

analysis of our data, which is very different from the dense

data of video.

Practically in our experiments edge voxels are extracted

from points quantised to a cubic lattice with a given cell size

and the number of points associated with each cell stored in

a dense array.

The structure tensor eigenvalues are calculated for each oc-

cupied voxel and the edge voxels identified by thresholding the

eigenvalues, as described above. This procedure is summarized

in Algorithm III-B.

IV. EDGE VOXEL EXTRACTION AND MAPPING

EXPERIMENTS

We test the effectiveness of edge voxel extraction pre-

processing for scan-to-map matching. We perform multi-

resolution occupied voxel list mapping as in [5]. We evaluate

performance based on speed, memory usage, and alignment

accuracy.

We evaluate speed by timing how long it takes to find the

best transform which aligns a scan to the map and how long

to update the map given the scan and the alignment transfor-

mation. These timings are performed on a single 3GHz CPU.

We have not included graphs of the timing information for the

edge voxel extraction because our current implementation for

this is inefficient operating on dense arrays rather than taking

advantage of the sparsity of occupied voxels. The edge voxel
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Algorithm 1 Edge Voxel Extraction

Load point cloud from sensor into occupied voxel list L of

resolution r.
Let V be the set of all occupied voxels in L
Let N be the set of all voxels within a k × k × k
neighborhood of a voxel in V
Let S = V ∪N
for all s ∈ S do

Compute Ix(s), Iy(s), and Iz(s)
Compute (Ix(s))

2, (Iy(s))
2, (Iz(s))

2, Ix(s)Iy(s),
Ix(s)Iz(s), and Iy(s)Iz(s)

end for
Let G be the k × k × k Gaussian kernel

Let E be an empty occupied voxel list to hold edge voxels

for all v ∈ V do
Compute Axx = G ∗ (Ix(s))2 (similarly for Axy , Axz ,

Ayy , Ayz , and Azz)

Compute the structure tensor for v:

A(v) =

⎡
⎣Axx Axy Axz

Axy Ayy Ayz

Axz Ayz Azz

⎤
⎦

Determine the eigenvalues for A(v) and sort them in

descending order: λ1 ≥ λ2 ≥ λ3

Classify v based on the eigenvalues and add v to E if v
is an edge voxel

end for

extraction operation currently takes around 10 seconds for a

single scan.

The memory requirements are dominated by storage for the

map. It consists of list-based representations of either all of the

occupied voxels or only the extracted edge voxels. To illustrate

the memory requirements, Fig. 7 and Fig. 6 include the total

voxels in the map as subsequent scans are aligned.

The experiments were performed with two datasets, blender
scene and thermolab. The first dataset, blender scene, consists
of depth images; Fig. 4 generated by a depth map rendering of

an indoor a scene hand modeled in Blender, a 3D animation

program.

The second dataset, thermolab, was recorded by Dorit

Borrmann, and Hassan Afzal from Jacobs University Bremen

gGmbH, Germany, [12]. The location is the Automation Lab

at this university. Acquisition of range information was from a

Riegl VZ-400. Each of the 9 composite scans contains around

400,000 points in a panorama formed by rotating the scanner

in place. Thermal camera information is also included in this

dataset but is not used for this paper.

Although we have refrained from testing characteristics of

edge voxel extraction believed to be beneficial, it is worth

discussing them in the light of the results. Desirable properties

of extracted edge voxels include the following: they should be

generally invariant to rotation and translation, they should be

helpful in terms of constraining robot pose, and they should be

an open enough class that some edge voxels can be extracted

Fig. 4. Example depth image and resulting occupied voxel map.

in the vast majority of situations. The extraction method must

be fast to compute and must eliminate a high percentage of

voxels found in typical mobile robot data, while ensuring that

the aforementioned properties are satisfied.

Figure 6 shows that mapping can be performed with compa-

rable accuracy to both odometry-based ground truth and full-

scan alignment. We judge accuracy here by map voxel count,

on the intuition that misaligned scans will result in more oc-

cupied voxels in the finished map. In this case, we performed

full scan mapping, edge voxel mapping, and mapping using

the ground truth poses. The poses determined during edge

voxel mapping were then used as the fixed poses in mapping

using the full scans. Although edge voxel mapping provides

somewhat less of a refinement to the odometry poses than

full scan mapping, the result is still a significant improvement

over the odometry and is comparable to that of the full scan

approach.

Our proposed method is robust and effective in extracting

edge voxels that exhibit the characteristics that we desire,

and the results of mapping experiments indicate that edge

voxels perform as well as full scans in mapping accuracy but

require significantly less memory and computational expense.
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Fig. 5. The map produced using full scans from the thermolab dataset (top),
and the map produced using extracted edge voxels (bottom).

Our edge extraction method is not yet optimized for speed

and scalability, but we are currently developing a sparse

representation that will permit fast extraction of edges as well

as refinement of the final map with edge extraction post-

processing.

V. CONCLUSION

We apply a novel voxel edge classification based on the

3D structure tensor to specifically excluded planar regions

and perform scan-to-map matching of the resulting wire-frame

like models. Whereas others have performed plane or straight

line fitting on point clouds and matched those features when

building a map, we operate on the voxels rather than points,

and remove those voxels in planar regions. The edge voxels

arising from the rejection of planar regions can lie on curved

lines and our approach works in cluttered environments. Re-

jection of planar voxels is motivated by the planar structure of

man-made environments. The majority of points in scans of

such spaces will be on flat walls, floors, and ceilings, and thus

their removal results in significant compression of the scan

and corresponding map data. Their more frequent occurrence
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Fig. 6. Execution timings, map memory requirement, and alignment accuracy
for the thermolab dataset. Alignment accuracy is shown as voxel counts
for maps produced by full scan alignment, full scan alignment with poses
determined by edge voxel alignment, and by ground truth poses.
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Fig. 7. Execution timings and map memory requirement for simulated depth
images.

in structured environments makes them less distinctive and

consequently less useful for scan-to-map matching and pose

determination.

Currently, the edge extraction operation is conducted on an

occupancy grid representation of the data. Scan data, however,

is quite sparse, so this is not an efficient or scalable implemen-

tation. We are developing an implementation of this approach

that leverages the occupied voxel lists of the MROL library

to perform the edge extraction from a sparse representation

of the data. This should increase execution speed and reduce

memory requirements.

We aim to improve the quality of edge voxel extraction

and resolve the aformentioned problem of spurious boundary

voxels by accounting for the difference in unknown and

free voxels. In our current implementation, only occupied

voxels are maintained, and there is no distinction between

free space that has been observed and unobserved, unknown

voxels. Consequently, many of the border pixels in each scan,

which have many unknown voxels in their neighborhoods, are

erroneously classified as edge voxels. Over time this results in

the degradation of the map quality as erroneous edge voxels

accumulate in the map. We plan to distinguish unknown and

free-space voxels in the future, which should improve map

quality and scan alignment accuracy.

The extraction of the edge voxels by filtering out the often

numerous planar voxels dramatically reduces the map size

and accelerates the alignment. In the experiments presented,

involving depth images from a model scene and real laser

range data, we record a five fold decrease in map storage

and a similar increase in alignment speed (Fig. 7 and Fig.

6). Even if edge voxel extraction fails, this approach can still

seamlessly fall back to full occupied voxel matching making

its operation robust in many environments. Finally, these edge

voxel maps could be used to localise both range sensors, as

demonstrated here, and in the future cameras with suitable

image edge extraction.
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