
Fast, Autonomous Flight in GPS-Denied and Cluttered

Environments

Kartik Mohta
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA
kmohta@seas.upenn.edu

Michael Watterson
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA
wami@seas.upenn.edu

Yash Mulgaonkar
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA
yashm@seas.upenn.edu

Sikang Liu
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA
sikang@seas.upenn.edu

Chao Qu
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA
quchao@seas.upenn.edu

Anurag Makineni
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA

makineni@seas.upenn.edu

Kelsey Saulnier
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA

saulnier@seas.upenn.edu

Ke Sun
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA
sunke@seas.upenn.edu

Alex Zhu
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA

alexzhu@seas.upenn.edu

Jeffrey Delmerico
Robotics and Perception Group

University of Zurich
Zurich, Switzerland

jeffdelmerico@ifi.uzh.ch

Konstantinos Karydis
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA

kkarydis@seas.upenn.edu

Nikolay Atanasov
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA

atanasov@seas.upenn.edu

Giuseppe Loianno
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA

loiannog@seas.upenn.edu

Davide Scaramuzza
Robotics and Perception Group

University of Zurich
Zurich, Switzerland
sdavide@ifi.uzh.ch

Kostas Daniilidis
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA
kostas@seas.upenn.edu

Camillo Jose Taylor
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA

cjtaylor@seas.upenn.edu

Vijay Kumar
GRASP Lab

University of Pennsylvania
Philadelphia, PA, USA
kumar@seas.upenn.edu

Abstract

One of the most challenging tasks for a flying robot is to autonomously navigate between
target locations quickly and reliably while avoiding obstacles in its path, and with little to no
a-priori knowledge of the operating environment. This challenge is addressed in the present
paper. We describe the system design and software architecture of our proposed solution,

and showcase how all the distinct components can be integrated to enable smooth robot
operation. We provide critical insight on hardware and software component selection and
development, and present results from extensive experimental testing in real-world warehouse
environments. Experimental testing reveals that our proposed solution can deliver fast and
robust aerial robot autonomous navigation in cluttered, GPS-denied environments.

1 Introduction

In recent times, there has been an explosion of research on micro-aerial vehicles (MAVs), ranging from
low-level control (Lee et al., 2010) to high-level, specification-based planning (Wolff et al., 2014). One class of
MAVs, the quadrotor, has become popular in academia and industry alike due to its mechanical and control
simplicity, high maneuverability and low cost of entry point compared to other aerial robots (Karydis and
Kumar, 2016). Indeed, there have been numerous applications of quadrotors to fields such as Intelligence,
Surveillance and Reconnaissance (ISR), aerial photography, structural inspection (Özaslan et al., 2016),
robotic first responders (Mohta et al., 2016), and cooperative construction (Augugliaro et al., 2014) and aerial
manipulation (Thomas et al., 2014). Such recent advances have pushed forward the capabilities of quadrotors.

Most of these works rely on the availability of ground truth measurements to enable smooth robot performance.
Ground truth can be provided by motion capture systems in lab settings, GPS in outdoor settings, or by
appropriately placed special tags in known environments. However, real-world environments are dynamic,
partially-known and often GPS-denied. Therefore, there is need to push further on developing fully autonomous
navigation systems that rely on onboard sensing only in order to fully realize the potential of quadrotors in
real-world applications. Our work aims at narrowing this gap.

Specifically, the focus of this paper is to provide a detailed description of a quadrotor system that is able
to navigate at high speeds to a goal in fully unknown and cluttered 3D environments while using only
onboard sensing and computation for state estimation, control, mapping and planning. The motivation for
this problem comes from the recently announced DARPA Fast Lightweight Autonomy program1. The main
challenge in creating such small, completely autonomous MAVs is due to the size and weight constraints
imposed on the payload carried by these platforms. This restricts the kinds of sensors and computation that
can be carried by the robot and requires careful consideration when choosing the components to be used for
a particular application. Also, since the goal is fast flight, we want to keep the weight as low as possible in
order to allow the robot to accelerate, decelerate and change directions quickly.

Any robot navigation system is composed of the standard building blocks of state estimation, control, mapping
and planning. Each of these blocks builds on top of the previous ones in order to construct the full navigation
system. For example, the controller requires a working state estimator while the planner requires a working
state estimator, controller and mapping system. Initial works on state estimation for aerial robots with purely
onboard sensing used laser rangefinders as the sensing modality and had limited computational capacity
available on the platforms (Bachrach et al., 2009; Achtelik et al., 2009; Grzonka et al., 2009). Due to the
limitations of laser scan matching coupled with limited computational capability, these works were limited to
slow speeds. Since the small and lightweight laser rangefinders that could be carried by the aerial robots only
measured distances in a single plane, these methods also required certain simplifying assumptions about the
environment, for example assuming 2.5D structure. As the computational power grew and more efficient
algorithms were proposed, it became possible to use vision for state estimation for aerial robots (Achtelik
et al., 2009; Blösch et al., 2010). Using cameras for state estimation allowed flights in 3D unstructured
environments and also faster speeds (Shen et al., 2013). As the vision algorithms have improved (Klein and
Murray, 2007; Mourikis and Roumeliotis, 2007; Jones and Soatto, 2011; Forster et al., 2014; Mur-Artal et al.,
2015; Bloesch et al., 2015) and the computational power available on small computers has grown, cameras
have now become the sensor of choice for state estimation for aerial robots. We use the visual odometry

1http://www.darpa.mil/program/fast-lightweight-autonomy

http://www.darpa.mil/program/fast-lightweight-autonomy

algorithm described in (Forster et al., 2017) for our platform due to the fast run time, ability to use wide
angle lenses without requiring undistortion of the full image, allowing the use of multiple cameras to improve
robustness of the system and incorporation of edgelet features in addition to the usual point features.

The dynamics of the quadrotor are nonlinear due to the rotational degrees of freedom. In the control design
for these robots, special care has to be taken in order to take this nonlinearity into account in order to utilize
the full dynamics of the robot. Most early works in control design for quadrotors (Bouabdallah et al., 2004;
Bouabdallah and Siegwart, 2005; Escareno et al., 2006; Hoffmann et al., 2007; Bouabdallah and Siegwart,
2007) used the small angle approximation for the orientation controller to convert the problem into a linear
one and proposed PID and backstepping controllers to stabilize the simplified system. Due to the small angle
assumption, these controllers are not able to handle large orientation errors and have large tracking errors for
aggressive trajectories. A nonlinear controller using quaternions (instead of Euler angles) was developed in
(Guenard et al., 2005) where the quadrotor was commanded to follow velocity commands. (Lee et al., 2010)
defined an orientation error metric directly in the SO(3) space and proposed a globally asymptotic controller
that can stabilize the quadrotor from large position and orientation errors. Our controller is based upon this
work and has good tracking performance even when following aggressive trajectories.

It has been shown that the trajectory generation for multi-rotor MAVs can be formulated as a Quadratic
Program (QP) (Mellinger and Kumar, 2011). Since the quadrotor is a differentially flat system, the trajectory
can be optimized as an nth order polynomial parameterized in time (Mellinger and Kumar, 2011). Generating
a collision-free trajectory is more complicated, in which additional constraints for collision checking are
required. Using Mixed Integer optimization methods to solve this problem has been discussed in (Mellinger
et al., 2012) and recently other approaches have been proposed to remove the integer variables and solve
the QP in a more efficient way (Richter et al., 2016; Deits and Tedrake, 2015b; Watterson and Kumar,
2015). Our pipeline uses a linear piece-wise path from a search-based planning algorithm to guide the convex
decomposition of the map to find a safe corridor in free space as described in (Liu et al., 2016). The safe
corridor is formed as linear equality constraints in the QP for collision checking. We also consider dynamic
constraints on velocity, acceleration and jerk in the QP to ensure that the generated trajectory does not
violate the system’s dynamics. In order to increase the safety, we propose a modified cost functional in the
trajectory generation step such that the generated trajectory will be close to the center of the safe corridor.

We couple our trajectory generation method described above with a receding horizon method (Bellingham
et al., 2002) for replanning. As the robot moves, we only keep a local robot centric map and use a local
planner to generate the trajectory. The main reasons behind this approach are: first, updating and planning
in global map is expensive; second, the map far away from the robot is less accurate and less important.
Since we are using a local planning algorithm, dead-ends are a well-known challenge. In order to efficiently
solve this, we build a hybrid map consisting of a 3D local map and a 2D global map and our planner searches
in this hybrid map to provide a globally consistent local action.

The purpose of a navigation system is to enable a robot to successfully traverse from a start pose to a goal
pose in either a known or an unknown environment. The problem of navigating in an unknown environment
is especially difficult, because in addition to having good state estimation and control, the robot needs to
build an accurate map as it moves, and also generate collision-free trajectories quickly in the known map
so that the replanning can be done at a high rate as the robot gets new sensor data. The initial works on
navigation in unknown environments with quadrotors used offboard computation in order to run the planning
due to the limited computation capability available on the platforms. (He et al., 2008) presented a navigation
system that uses a known map and takes the localization sensor model into account when planning so as to
avoid regions that would lead to bad localization quality. (Grzonka et al., 2009) demonstrated a quadrotor
system that is able to localize and navigate in a known map using laser rangefinders as the main source of
localization and mapping. Both of these transferred the sensor data to an offboard computer for processing.
With a more powerful computer onboard the robot, (Bachrach et al., 2011) were able to run a scan matching
based localization system and the position and orientation controllers on the robot while the planner and a
SLAM system to produce a globally consistent map ran on an offboard computer. (Shen et al., 2011) was
the first to demonstrated a full navigation system running onboard the robot without a known map of the

environment. Since then, multiple groups have demonstrated similar capabilities (Valenti et al., 2014; Schmid
et al., 2014; Nuske et al., 2015).

In this paper, we describe our navigation system that allows fast flight of a quadrotor from a starting position
to a goal location while avoiding obstacles during the flight. In order for the platform to have sufficient
thrust-to-weight ratio for fast acceleration and deceleration, we wanted to keep the sensing and computation
payload to be as small as possible. One of the main challenges for this work was designing and constructing
the system which can run within these limited size, weight and computation budgets. Moreover, most of the
previous works on fast flight assume a known map (Bry et al., 2015), but we have specifically designed our
system for the case of an unknown environment. We believe this is one of the first systems that is capable of
fast aerial navigation through fully unknown and cluttered GPS-denied environments using only onboard
sensing and computation. The navigation system has been tested thoroughly in the lab and in real world
obstacle-rich environments that were set up as part of the DARPA FLA program.

This paper is organized as follows. In Section 2 we describe our platform and the design decisions made in
order to choose the current configuration. In Section 3, we describe our estimation and control algorithms. In
this section, we also elaborate upon our sensor fusion methodology that is crucial to get good state estimates
in order to control the robot. Section 4 describes our mapping, planning and trajectory generation modules.
In Section 5 we show results from various experiments performed in order to benchmark and test our full
navigation system. Finally, we conclude in Section 6 with some discussion about the results and give some
directions of future work that would help improve our system.

2 System Design

In this section we describe our overall system design. Specifically, we discuss platform design considerations,
describe our computation, sensing and communication modules, and highlight critical software architecture
components that enable the system to operate smoothly.

Figure 1: Our robot configuration showing the platform with stereo cameras and a nodding lidar.

2.1 Platform Design

The guiding principle in the design of the platform was fast and agile flight. The desired capability from
the base platform was to be able to reach speeds of up to 20m/s. This leads to a secondary and stronger
requirement that the platform has to be able to stop from those speeds within typical sensor detection
distances, which are around 20–25m. This implies that the platform should be capable of accelerations of up
to 10m/s2. Reaching such high accelerations while maintaining the altitude requires a thrust-to-weight ratio
of at around 1.5. In order to have some margin for control during these high acceleration phases, we searched
for an off-the-shelf platform that had sufficient thrust to provide a thrust-to-weight ratio of more than 2.0
when fully loaded. This included an expected sensing and computation payload of up to 1 kg and a battery

sufficient for desired flight time of around 5min. A list of various commercially available options is shown in
Table 1.

Table 1: Specifications of different commercially available off the shelf platforms. We expect a sensing and
computation payload of approximately 1 kg, which has been added in the All-up mass. The mass of the
battery is based upon the recommended battery for each platform.

Platform Frame Battery All-up Max Thrust Thrust/Weight
(kg) (kg) (kg) (kgf) Ratio

3DR X8+ 1.855 0.817 (4S) 3.672 10.560 2.876
DJI F550 + E310 1.278 0.600 (4S) 2.878 5.316 1.847
DJI F550 + E600 1.494 0.721 (6S) 3.215 9.600 2.986
DJI F450 + E310 0.826 0.400 (3S) 2.226 3.200 1.438
DJI F450 + E600 0.970 0.721 (6S) 2.691 6.400 2.378

Based on the survey of the available platforms, we selected the platform configuration consisting of the
DJI Flamewheel 450 base along with the DJI E600 motors, propellers and speed controllers since it closely
matches our performance requirement. Each of the E600 motor and propeller combination has a rated
maximum thrust of approximately 1.6 kgf. This leads to total thrust of around 6.4 kgf for our quadrotor
configuration. For the low-level controller, we selected the Pixhawk (Meier et al., 2015) which is a popular
open-source autopilot. The main reason behind choosing the Pixhawk is that the firmware is open-source
and customizable, giving us the capability of easily modifying or adding low-level capabilities as desired. In
comparison, most of the commercially available autopilot boards are usually black boxes with an interface to
send commands and receive sensor data. The base platform consisting of the F450 frame, E600 propulsion
system and the Pixhawk has a mass of approximately 1.1 kg. Adding the sensing and computation payload
leads to a platform weight of 2.1 kg without the battery. In order to achieve the flight time requirement, we
need to select the correct battery taking into account that the maximum total mass of the platform should
be below 3 kg.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 110 120 130 140 150 160

Specific Energy [Wh/kg]

Figure 2: Histogram of specific energy values for a set of 36 6S rated hobby grade lithium polymer batteries.

The batteries used in MAVs are based on lithium polymer chemistry due to their high energy and power
densities. The DJI E600 propulsion system requires a 6S battery, i.e. a battery with rated voltage of
approximately 22.2V. Given that, the main design choice available is the battery capacity. Typical hobby
grade lithium polymer batteries have specific energy values are around 130–140Wh/kg (Fig. 2). The power
required to hover for quadrotors is approximately 200W/kg (Mulgaonkar et al., 2014), so for a platform with
a total mass between 2.5–3 kg, the power consumption would be 500–600W. Assuming an overall efficiency
of around 60%, (Theys et al., 2016) going from the supplied power from the battery to the mechanical power
output at the propellers, the energy capacity of the battery for a 5min flight time needs to be approximately
69.4–83.3Wh. In practice, we never use the full capacity of the battery in order to preserve the life of the

battery and also to have some reserve capacity for unforeseen circumstances. If we only use 80% of the rated
capacity of the battery, it leads to a required battery energy capacity of 86.8–104.1Wh. Using the average
specific energy value of 135Wh/kg, we expect the mass of the battery to be between 0.64–0.77 kg which fits
in well with our total mass budget. Based on the available battery capacities, we selected batteries with
capacities of 88.8Wh and 99.9Wh in order to provide some flexibility in terms of having higher performance
or higher endurance.

• 120W DC-DC Converters • 120W Regulated Outputs

• 12V & 5V, 4A Connectors • 600A MOSFET Switch

• Micro Battery Monitor • Pixhawk Power Connector

• 20A Solid State Fuses • 200A Current Sensor

160 mm

1
6

0
 m

m

Figure 3: Power Distribution Board.

In order to power all the sensors and the computer onboard the robot, we required regulated power supplies
for 12V and 5V. We designed a custom power distribution board, shown in Fig. 3, consisting of a power
conditioning circuit, DC-DC converters, power connectors, and a battery monitor. The board is capable of
providing filtered 12V and 5V supply at a maximum of 120W each. In addition to power management, for
weight saving reasons, the board replaces the top plate of the standard commercially available configuration,
forming an integral part of the robot frame.

2.2 Sensing, Computation and Communication

The robot needs to navigate through cluttered 3D environments with purely on-board sensing and computation.
This requires the correct selection of sensors and the onboard computer in order to be able to perform the
desired task while keeping the mass low. The two tasks that the robot has to perform which require proper
sensor selection are state estimation and mapping. The two solutions for state estimation for MAVs are either
vision based or lidar based. For unstructured 3D environments, the vision based systems have been more
successful that lidar based ones, so we decided on using cameras as our primary state estimation sensors.
More details about why the stereo configuration was selected are provided in Section 3. In addition to the
cameras, we added a downward pointing lidar (Garmin Lidar-Lite) and a VectorNav VN-100 IMU for state
estimation. The VN-100 IMU is also used to trigger the capture from the cameras in order to have time
synchronization between the cameras and IMU.

The situation for mapping is a bit different. Current vision based dense mapping algorithms are either not
accurate enough or too computationally expensive to run in real time, so lidar based mapping is still the
preferred choice for MAVs. In order to keep our weight low, we decided to use a Hokuyo 2D lidar instead of
a heavy 3D lidar. We still required a 3D map for planning, so we decided to mount the 2D lidar on a one
degree of freedom nodding gimbal as shown in Fig. 4.

In order to handle all the computations for estimation, control, mapping and planning onboard the robot, we
selected the Intel NUC i7 computer. This single board computer is based on the Intel i7-5557U processor and
supports up to 16GB of RAM and an M.2 SSD for storage. This provides sufficient computing power to run

Figure 4: Our mapping solution consisting of a 2D lidar mounted on a nodding gimbal.

our full software stack on the robot without overloading the CPU and also gives us ample amount of storage
for recording sensor data for long flights. While the robot is flying, we need to have a communication link in
order to monitor the status of the various modules running on the robot. We wanted a link that has good
bandwidth, so that during development we can stream the sensor data back to the base station, but also good
range so that we do not loose the link when running long range (up to 200m) experiments. In addition, since
we use ROS as our software framework, having a wireless link that behaves like a wireless local area network
was preferred in order to be able to use the standard ROS message transport mechanism. Based on these
requirements, we selected the Ubiquity Networks Picostation M2 for the robot side and the Nanostation M2
for the base station. These are high power wireless radios that incorporate Ubiquity Networks’ proprietary
airMAX protocol, which improves latency and reliability for long range wireless links compared to the 802.11
protocol, which was designed mainly for indoor use. The Picostation is the smaller and lighter of the two,
weighing at around 50 g (after taking off the outer plastic case) compared to 400 g for the Nanostation. This
lower weight comes with the compromise of lower transmit power and lower bandwidth, but the performance
was sufficient for our purpose, providing a bandwidth of more than 50Mbps up to distances of 200m.

2.3 Software Architecture

Planner Position
Controller

Attitude
Controller

Onboard
filterUKF

Actuators

Rigid body
dynamics

Sensors

Pixhawk

Thrust
Rdes
Ωdes

Pos Vel
Acc Jerk

Yaw
Yaw rate

Motor
Speeds

IMU

 Pos Vel R
R Ω

Intel NUC

Sensors +
VO

Robot

R

Figure 5: A high level block diagram of our system architecture.

Any big system requires all of the individual components to work together in order to allow the full system
to function properly. Figure 5 shows a high level block diagram of our system illustrating the different
components and how they are connected to each other. The software components in our system can be
grouped under four categories: Estimation, Control, Mapping and Planning. Each of these is in turn separated
into smaller parts, and we use ROS as the framework for all the high level software running on the robot.
ROS is chosen because it provides a natural way to separate each component into its own package allowing
distributed development and ease of testing and debugging. Each executable unit in a ROS system is called a

node and different nodes communicate with each other using message passing. In this way, a ROS system
can be thought of as a computational graph consisting of a peer-to-peer network of nodes processing and
passing data among them. One convenient feature of this system is that the nodes can be run on different
computers, since the message passing uses the TCP transport, which allows us to run a subset of the nodes
on the robot while the remaining can be run on a workstation computer making it easier to analyze and
debug problems leading to a faster development phase. We also benefit from the whole ROS ecosystem of
tools and utilities that have been developed in order to perform routine but useful tasks when developing a
system such as tools for logging and playing back the messages passed between nodes or tools to visualize the
data being sent between nodes.

3 Estimation and Control

There has been a lot of research in recent times on visual and visual-inertial odometry for MAVs with a
variety of proposed algorithms (Klein and Murray, 2007; Mourikis and Roumeliotis, 2007; Jones and Soatto,
2011; Forster et al., 2014; Mur-Artal et al., 2015; Bloesch et al., 2015). The algorithms can be classified
based on the number and type of cameras required into three groups: monocular, stereo, or multi-camera.
There are also algorithms using depth cameras but these cameras don’t work well outdoors with sunlight
so we do not consider them. An overview of the advantages and disadvantages of the algorithms is shown
in Table 2. Looking at these, it is clear that the multi-camera setup would be the most preferred but the
software complexity is still a hurdle in terms of real-world usage. Monocular algorithms have received a
lot of research attention in the last few years and have improved to a level that they can be reliably used
as the only source of odometry for a MAV system. One problem of the monocular algorithms is that they
require an initialization process during which the estimates are either not available or are not reliable. In
comparison, the stereo algorithms can be initialized using a single frame making them much more robust in
case the algorithm needs to be reinitialized while flying if, for example, there is a sudden rotation. One more
advantage of using stereo cameras is that in the extreme case that stereo matching is not possible due to
features being too far away, we can use the input from only one of the cameras from the stereo pair and treat
it as a monocular camera setup.

Table 2: Advantages and disadvantages of different visual odometry algorithms.

Monocular Stereo Multi-camera

Mechanical complexity Low Medium Low
Software complexity Medium Low-Medium High
Robustness Low-Medium Medium High
Feature distance High Medium-High High

3.1 Visual Odometry

3.1.1 Overview of SVO

To estimate the six degree-of-freedom motion of the platform, we use the Semi-direct Visual Odometry
(SVO) framework proposed in (Forster et al., 2017). SVO combines the advantages of both feature-based
methods, which minimize the reprojection error of a sparse set of features, and direct methods, which minimize
photometric error between image pixels. This approach estimates frame-to-frame motion of the camera by
first aligning the images using a sparse set of salient features (e.g. corners) and their neighborhoods in the
images, estimating the 3D positions of the feature points with recursive Bayesian depth estimation, and
finally refining the structure and camera poses with optimization (e.g. bundle adjustment). Our efficient
implementation of this approach is capable of estimating the pose of a camera frame in as little as 2.5
milliseconds, while achieving comparable accuracy to more computationally intensive methods.

Sparse Model-based
Image Alignment

Feature Alignment

Pose & Structure
Refinement

Motion Estimation Thread

New Image

Last Frame

Map

Frame
Queue

Feature
Extraction

Initialize
Depth-Filters

Mapping Thread

Is
Keyframe?

yes

Update
Depth-Filters

yes:
insert
new Point

no

Converged?

Figure 6: A high level diagram of the SVO software architecture.

The system is decomposed into two parallel threads: one for estimating camera motion, and one for mapping
the environment (see Fig. 6). We briefly describe the algorithm here but we refer the reader to the original
paper (Forster et al., 2017) for further details.

In the following, the intensity image from camera C at timestep k is denoted by I
C

k while u = π(ρ) denotes
the camera projection model that maps a point in 3D space ρ ∈ R

3 to image coordinates u ∈ R
2. Also, we

use ‖ · ‖Σ to denote the Mahalanobis norm, defined as ‖x‖Σ .
=

√
xTΣ−1x.

3.1.2 Motion Estimation

The motion-estimation thread proceeds by first performing a sparse image alignment between the two most
recent frames, then obtaining sub-pixel feature correspondence using direct methods on patches around each
sparse feature, and finally pose refinement on the induced reprojection error.

Consider a body frame B that is rigidly attached to the camera frame C with known extrinsic calibration
TCB ∈ SE(3) (see Fig. 7). Our goal is to estimate the incremental motion of the body frame Tkk−1

.
= TBkBk−1

such that the photometric error is minimized:

T
⋆
kk−1 = arg min

Tkk−1

∑

u∈RC
k−1

1

2
‖r

IC
u

(Tkk−1)‖2ΣI
, (1)

where RC

k represents the set of pixels with known depth in camera C at time k and the photometric residual
r
IC
u

is defined by the intensity difference of pixels in subsequent images IC

k and I
C

k−1 that observe the same
3D point ρu:

r
IC
u

(Tkk−1)
.
= I

C

k

(

π(TCBTkk−1 ρu)
)

− I
C

k−1

(

π(TCB ρu)
)

(2)

The corresponding 3D point ρu for a pixel with known depth, expressed in the reference Bk−1 frame, is
computed by means of back-projection:

ρu = TBC π−1
ρ (u) ∀ u ∈ RC

k−1 (3)

Sparse image alignment solves the non-linear least squares problem in (1) using standard iterative non-linear
least squares algorithms. To make the sparse approach more robust, we aggregate the photometric cost in a

ρ3

Tk,k−1

u
′
3

Ick−1

Ick

u3

ρ2
ρ1

u1

u2

u
′
1

u
′
2

TCB
TCB

Figure 7: Changing the relative pose Tk,k−1 between the current and the previous frame implicitly moves
the position of the reprojected points in the new image u′

i. Sparse image alignment seeks to find Tk,k−1

that minimizes the photometric difference between image patches corresponding to the same 3D point (blue
squares).

small patch centered at the feature pixel. Since the depth for neighboring pixels is unknown, we approximate
it with the same depth that was estimated for the feature.

In the next step, we relax the geometric constraints given by the reprojection of 3D points and perform
an individual 2D alignment of corresponding feature patches. In order to minimize feature drift over the
camera trajectory, the alignment of each patch in the new frame is performed with respect to a reference
patch from the frame where the feature was first extracted. This step establishes feature correspondence with
subpixel accuracy, but the computed feature alignment violates the epipolar constraints and introduces a
small reprojection error, which is typically below 0.5 pixels.

In the last step of motion estimation, we refine the camera poses and landmark positions by minimizing the
squared sum of reprojection errors of all the point and edge features over the set of keyframes in the map.
While optimization over the whole trajectory with bundle adjustment results in higher accuracy, for MAV
motion estimation, it is sufficient to only optimize the latest camera pose and the 3D points separately, which
permits more efficient computation.

3.1.3 Mapping

In the derivation of motion estimation, we assumed that the depth at sparse feature locations in the image
was known. Here, we describe how the mapping thread estimates this depth for newly detected features,
assuming that the camera poses are known from the motion estimation thread.

The depth at a single pixel is estimated from multiple observations by means of a recursive Bayesian depth
filter. When the number of tracked features falls below some threshold, a new keyframe is selected and new
depth filters are initialized at corner and edge features in that frame. Every depth filter is associated to this
reference keyframe r, and the initial depth uncertainty is initialized with a large value. For a set of previous
keyframes as well as every subsequent frame with known relative pose {Ik,Tkr}, we search for a patch along
the epipolar line that has the highest correlation via zero mean sum of squared differences (see Fig. 8). From
the pixel with maximum correlation, we triangulate the depth measurement ρ̃ki , which is used to update
the depth filter. If enough measurements have been obtained such that uncertainty in the depth is below a
certain threshold, we initialize a new 3D point at the estimated depth in our map, which subsequently can be
used for motion estimation (see system overview in Fig. 6).

Tr,k

Ir

Ik

ρ̂i

ui
u
′
i

ρ̃ki

ρmin
i

ρmax
i

Figure 8: Probabilistic depth estimate ρ̂i for feature i in the reference frame r. The point at the true depth
projects to similar image regions in both images (blue squares). Thus, the depth estimate is updated with
the triangulated depth ρ̃ki computed from the point u′

i of highest correlation with the reference patch. The
point of highest correlation lies always on the epipolar line in the new image.

TBC2
TBC1

Tkk−1

Body Frame

Figure 9: Visual odometry with multiple rigidly attached and synchronized cameras. The relative pose of
each camera to the body frame TBCj

is known from extrinsic calibration and the goal is to estimate the
relative motion of the body frame Tkk−1.

3.1.4 Implementation Details

Our system utilizes multiple cameras, so consider a camera rig with M cameras (see Fig. 9). We assume
that the relative pose of the individual cameras c ∈ C with respect to the body frame TCB is known from
extrinsic calibration. To generalize sparse image alignment to multiple cameras, we simply need to add an
extra summation in the cost function of (1):

T
⋆
kk−1 = arg min

Tkk−1

∑

C∈C

∑

u∈RC
k−1

1

2
‖r

IC
u

(Tkk−1)‖2ΣI
. (4)

The same summation is necessary in the last step of the motion estimation part to sum the reprojection
errors from all cameras. The remaining steps of feature alignment and mapping are independent of how
many cameras are used, except that more images are available to update the depth filters. An initial map is
computed during initialization using stereo matching.

We additionally apply motion priors within the SVO framework by assuming a constant velocity relative
translation prior p̃kk−1 and a relative rotation prior R̃kk−1 from a gyroscope. We employ the motion prior by
adding additional terms to the cost of the sparse image alignment step (4):

T
⋆
kk−1 = arg min

Tkk−1

∑

C∈C

∑

u∈RC
k−1

1

2
‖r

IC
u

(Tkk−1)‖2ΣI
(5)

+
1

2
‖pkk−1 − p̃kk−1‖2Σp

+
1

2
‖ log(R̃Tkk−1Rkk−1)

∨‖2ΣR
,

where the covariances Σp,ΣR are set according to the uncertainty of the motion prior, the variables
(pkk−1, Rkk−1)

.
= Tkk−1 are the current estimate of the relative position and orientation (expressed in

body coordinates B), and the logarithm map, log(·)∨, maps a rotation matrix to its rotation vector.

Stereo Camera

Gyroscope

Height sensor

Accelerometer

UKF

Prediction

Update40 Hz

200 Hz

200 Hz

20 Hz

SVO 40 Hz

200 Hz Position
Velocity
Orientation

Figure 10: Data flow diagram of the UKF used on the robot.

We refer the reader to the original paper (Forster et al., 2017) for further details about the approach,
implementation and its performance.

3.2 Sensor Fusion

We have multiple sensors on the platform, each providing partial information about the state of the robot.
Moreover, the sensors provide output at different rates, for example, we run the stereo cameras at 40Hz while
the downward pointing distance sensor runs at 20Hz. We need to merge these pieces of partial information
into a single consistent estimate of the full state of the robot. The typical method used for such sensor fusion
tasks is some variant of the Kalman filter. The quadrotor is a nonlinear system due to its rotational degrees
of freedom. This requires the use of either an Extended Kalman filter (EKF) or an Unscented Kalman filter
(UKF). The UKF has the advantage of better handling the system nonlinearities with only a small increase in
computation, so we chose the UKF for our system. Fig 10 shows the inputs and outputs of the UKF module
running on the robot. The state vector used in the UKF is,

x =
[

pT ṗT φ θ ψ bTa bTω

]T

where p is the world-frame position of the robot, ṗ is the world-frame velocity, φ, θ and ψ are the roll, pitch
and yaw respectively, ba is the accelerometer bias while bω is the gyroscope bias. We use the ZYX convention
for representing the rotations in terms of the Euler angles φ, θ and ψ. The Euler angle representation was
chosen for representing the orientation primarily because of its simplicity. The well-known problem of gimbal
lock when using Euler angles is not an issue in this case since the desired and expected roll and pitch of the
robot is always less than 90◦.

The UKF consists of a prediction step which uses the IMU data as the input and multiple update steps, one
for each of the other sensors. The update step is performed whenever the corresponding sensor measurement
arrives. The prediction step is nonlinear since the accelerometer and gyroscope measurements are in the body
frame while the position and velocity in the state are in the world frame, which requires the transformation
of the measured quantities from body to world frame using the estimated orientation.

Given that the state at iteration k, xk (dimension n), has mean x̄k and covariance Pk, we augment it with
the process noise (dimension p) having mean v̄k and covariance Qk, creating the augmented state xa

k and
covariance matrix P a

k ,

x̄a
k =

[

x̄k

v̄k

]

, P a
k =

[

Pk 0

0 Qk

]

Then, we generate a set of sigma points by applying the Unscented transform (Julier et al., 1995) to the

augmented state,
X

a
0(k) = x̄a

k

X
a
i (k) = x̄a

k +
√

(L+ λ)P a
k i = 1, . . . , L

X
a
i (k) = x̄a

k −
√

(L+ λ)P a
k i = L+ 1, . . . , 2L

(6)

where L = n+ p is the dimension of the augmented state and λ is a scaling parameter (Wan and Merwe,
2000).

These sigma points are then propagated through the process model with the accelerometer and gyroscope
measurements as input.

X
x
i (k + 1 | k) = f

(

X
x
i (k),u(k),X

v
i (k)

)

where X
x
i is the state part of the augmented state while X

v
i is the process noise part. The process model,

f (xk,uk,vk), for our system is given by

uk =
[

aT

meas ωT

meas

]T

vk =
[

vT

a vT

ω vT

ba
vT

bω

]T

a = ameas − ba + va

ω = ωmeas − bω + vω

pk+1 = pk + ṗk dt

ṗk+1 = ṗk + (Rka− g) dt

Rk+1 = Rk

(

I3 + [ω]× dt
)

bak+1
= bak

+ vba dt

bωk+1
= bωk

+ vbω dt

where Rk = R (φk, θk, ψk) is the rotation matrix formed by using the ZYX convention for the Euler angles
while va, vω, vba and vbω are the individual process noise terms.

From the transformed set of sigma points, X x
i (k + 1 | k), we can calculate the predicted mean and covariance,

x̄k+1 | k =

2L
∑

i=0

wm
i X

x
i (k + 1 | k)

Pk+1 | k =

2L
∑

i=0

wc
i

[

X
x
i (k + 1 | k)− x̄k+1 | k

] [

X
x
i (k + 1 | k)− x̄k+1 | k

]T

where wm
i and wc

i are scalar weights (Wan and Merwe, 2000).

Whenever a new sensor measurement, yk+1, arrives, we run the update step of the filter. First we generate a
new set of sigma points in the same way as done during the prediction step, (6), with the augmented state
and covariance given by,

x̄a
k+1|k =

[

x̄k+1 | k

n̄k

]

, P a
k+1|k =

[

Pk+1|k 0

0 Rk

]

where n̄k is the mean of the measurement noise and Rk is the covariance. The generated sigma points are
then used to generate the predicted measurement using the measurement function h (x,n),

Y i(k + 1 | k) = h
(

X
x
i (k + 1 | k),Xn

i (k + 1 | k)
)

ȳk+1|k =

2L
∑

i=0

wm
i Y i(k + 1 | k)

Pyy =
2L
∑

i=0

wc
i

[

Y i(k + 1 | k)− ȳk+1|k

] [

Y i(k + 1 | k)− ȳk+1|k

]T

And finally the state is updated as follows,

Pxy =

2L
∑

i=0

wc
i

[

X
x
i (k + 1 | k)− x̄k+1 | k

] [

Y i(k + 1 | k)− ȳk+1|k

]T

K = PxyP
−1
yy

x̄k+1 = x̄k +K
(

yk+1 − ȳk+1|k

)

Pk+1 = Pk+1 | k −KPyyK
T

Note that for each sensor input to the UKF except the IMU, which is used for the prediction step, there is
a separate measurement function, h (x,n), and the full update step is performed, with the corresponding
measurement function, when an input is received from any of those sensors.

In order to take care of jumps in the height sensor when going over obstacles such as boxes, the UKF
maintains an internal floor height parameter. If there is a jump in the height sensor output compared to
the expected value, the UKF assumes that the floor level has changed and uses the new floor level as the
reference level for the height sensor. In this way, jumps in the height sensor output are properly taken care of.
The limitation of this approach is that when the floor level changes slowly, the robot would only maintain the
desired height relative to the floor level and would move up and down as the floor level rises and falls.

The attitude filter running on the Pixhawk is a simple complementary filter which can take an external
reference orientation as an input. This allows us to provide the estimate from the UKF to the Pixhawk in
order to improve the orientation estimate on the Pixhawk. This is important for good control performance
since the orientation controller running on the Pixhawk uses the Pixhawk’s estimate of the orientation while
our control commands are calculated using the UKF estimates. Without an external reference being sent to
the Pixhawk, the orientation estimates on the Pixhawk can be different from the UKF which would lead to
an incorrect interpretation of the control commands.

3.3 Control

The controller used for the robot has the cascade structure, as shown in Figure 5, which is has become
standard for MAVs. In this structure, we have an inner loop controlling the orientation and angular velocities
of the robot while an outer loop controls the position and linear velocities. In our case, the inner loop runs at
a high rate (400Hz) on the Pixhawk autopilot while the outer loop runs at a slightly slower rate (200Hz) on
the Intel NUC computer.

At every time instance, the outer loop position controller receives a desired state, which consists of a desired
position, velocity, acceleration and jerk, from the planner and using the estimated state from the UKF,
computes a desired force, orientation and angular velocities which are sent to the orientation controller. The
inner loop orientation controller receives these and computes the thrust and moments required to achieve the
desired force and orientation. These are then converted into individual motor speeds that are sent to the
respective motor controllers.

The controller formulation we use is based on the controller developed in (Lee et al., 2010) with some
simplifications. The thrust command of the position controller is calculated as,

epos = p̂− pdes , evel = ˆ̇p− ṗdes

f = m
(

−kposepos − kvelevel + ge3 + p̈des

)

Thrust = f · R̂e3 (7)

where p̂ is the estimated position of the robot in the world frame, ˆ̇p is the estimated velocity of the robot in
the world frame, terms with the des subscript are the desired quantities, m is the mass of the robot, kpos and

kvel are controller gains, e3 = [0 0 1]
T, and R̂ is the rotation matrix which converts vectors from body frame

to world frame calculated using the estimated roll, pitch and yaw.

The desired attitude is calculated as,

b2,des =
[

− sinψdes, cosψdes, 0
]T

b3 =
f

‖f‖ , b1 =
b2,des × b3
∥

∥b2,des × b3
∥

∥

, b2 = b3 × b1

Rdes =
[

b1, b2, b3
]

(8)

ḃ2,des =
[

− cosψdesψ̇des, − sinψdesψ̇des, 0
]T

ḃ3 = b3 ×
ḟ

‖f‖ × b3, ḃ1 = b1 ×
ḃ2,des × b3 + b2,des × ḃ3

∥

∥b2,des × b3
∥

∥

× b1, ḃ2 = ḃ3 × b1 + b3 × ḃ1

[Ωdes]× = RT

desṘdes (9)

where ψdes and ψ̇des are the desired yaw angle and yaw rate respectively.

Note that here we have to define b2,des based on the yaw instead of defining b1,des as done in (Mellinger and
Kumar, 2011) due to the different Euler angle convention, we use the ZYX convention while they used ZXY.

The thrust and attitude commands, from (7), (8) and (9), are then sent to the Pixhawk autopilot through
mavros2. The attitude controller running on the Pixhawk takes these commands and converts them to
commanded motor speeds. First, using the Rdes and the estimate of the current orientation, R̂, we calculate
the desired moments as follows,

[eR]× =
1

2

(

RT

des R̂− R̂TRdes

)

, eΩ = Ω− R̂TRdesΩdes

M = −kReR − kΩeΩ

where Ω is the current angular velocity of the robot in the body frame, and kR and kΩ are controller gains.

Then, from the desired thrust and moments, we can calculate the thrust required from each propeller which
allows us to compute the desired motor speed as shown in (Michael et al., 2010).

4 Mapping and Planning

Our navigation system consists of five parts as shown in Fig. 11. In this section, we discuss the mapping,
planner and trajectory generation threads.

4.1 Mapping

We have mounted a LIDAR on a servo such that we can generate a 3D voxel map by rotating the laser.
Updating the map and planning using the 3D global map are both computationally expensive and in addition,
with noise and estimation drift, the global map can be erroneous. Hence we utilize a local mapping technique
that generates a point cloud around current robot location (Fig. 12). This local point cloud, M c, has fixed
size and fine resolution and is used to build a 3D occupancy voxel map, M l, centered at current robot location.
Since the local map only records the recent sensor measurements with respect to current robot location, the
accumulated error in mapping is small. We also generate a coarser resolution 2D map, Mw, in global frame
in order to solve the dead-end problem caused by local planning. We call this map the “global information

2https://github.com/mavlink/mavros

https://github.com/mavlink/mavros

Mapping	

(40	Hz)	

Planner	

(3	Hz)

Trajectory	

Genera:on	

(3	Hz)

Receding	

Horizon	

Control	

(200 Hz)

Requestτ
g

xdes

State	

Es:ma:on	

(200 Hz)

m

Pτ ,Mτ Φτ

Mτ

Figure 11: Our navigation framework. A desired goal g is sent to the planner at the beginning of the
task. The planner generates a path, Pτ , using the map, Mτ , and sends it to the trajectory generator. The
trajectory generator converts the path into a trajectory, Φτ , and sends it to the receding horizon controller.
The controller then derives the desired state xdes at 200Hz from this trajectory which is sent to the robot
controller. The input m to the mapping block denotes the sensor measurements.

map” since it contains two pieces of information: one is the known and unknown spaces so that we know
which part has been explored, the other is the location of walls detected from M c that the robot cannot fly
over. The global information map is constructed by taking a slice of the 3D local map while taking care of
removing obstacles that the robot can go over or under and performing a ray-trace of all the occupied voxels
in this slice. There is no loop-closure or global scan-matching involved in constructing this map.

(a) Local point cloud Mc (40m×

20m× 4m).
(b) Local map M l (yellow
bounding box, 15m × 10m ×

3m) and global map Mw (green
bounding box, 80m× 40m).

(c) Path planned using both
M l,Mw.

Figure 12: We keep the range of the local point cloud equal to the sensor range (e.g 30m for a laser
rangefinder). The size of local map M l is smaller than the point cloud M c because of the computational
limitation. For planning, we dilate the occupied voxel in M l by the robot radius. The global information map
is much larger but with much coarser resolution (1m). For each map, we draw a bounding box to visualize
the size.

4.2 Path Planning

We use A⋆ to plan a path in a hybrid graph that links the voxels in both local 3D map M l and global
information map Mw (result is shown in Fig. 12(c)). By using the hybrid graph, we can efficiently derive the
path P in local map that is globally consistent. Fig. 13 shows an example of using this method to solve the
dead-end corridor problem.

(a) Local map M l
τ1

(b) Global map Mw
τ1

(c) Local map M l
τ2

(d) Global map Mw
τ2

Figure 13: At planning epoch τ1, the end of the corridor cannot be viewed by the sensor with limited range
and the path leads the quadrotor to go forward (a)-(b). At planning epoch τ2, with a similar local map M l

τ2

but different global map Mw
τ2

which contains the dead-end geometry, planning to the same goal results in a
path which avoids going into the dead-end.

4.3 Trajectory Generation

In this subsection, we are going to introduce the trajectory generation method given the map M and a prior
path P . The trajectory generation process is shown in Fig. 14. Through regional inflation, a safe corridor is
found in M that excludes all the obstacle points. As the intermediate waypoints in P can be close to the
obstacles, we shift the intermediate waypoints towards the center of safe corridor. The new path P ⋆ and the
safe corridor are used to generate the trajectory.

RILS
Path	

Modifica0on
Trajectory	

Op0miza0on

P

M

P

Cs

P
?

Cs
Φ

Figure 14: Trajectory generation process, which can be treated as a black box (dashed rectangle) as in Fig. 11.
The inputs are a path P and a discrete map M , output is the dynamically feasible trajectory Φ.

4.3.1 Regional Inflation by Line Segments

Inspired by the IRIS algorithm in (Deits and Tedrake, 2015a), we developed an algorithm to dilate a path in
free space using ellipsoids. We briefly describe the process here but more details can be found in (Liu et al.,
2017).

For each line segment in the path P , we generate a convex polyhedron that includes the whole segment but
excludes any occupied voxel in M through two steps:

1. Grow ellipsoid for each line segment (Fig. 15)

2. Inflate the ellipsoid to generate the polyhedron (Fig. 16)

The ellipsoid is described as ξr(E, d) = {Ex̃ + d | ‖x̃‖ ≤ r} which is the projection of a unit sphere with
radius r into R

3. Here, the matrix E denotes the projection matrix and vector d represents the center of the

p
?

p
?

Figure 15: Construction of ellipsoid for each line segment. Gray regions indicate obstacles while the white
region is free space. Left: starting with a sphere with the line segment as the diameter, we find the closest
point p⋆ to the center of the line segment and adjust the length of short axes such that the dashed ellipsoid
touches this p⋆. Middle: repeat the same procedure, find a new closest point p⋆ and the new ellipsoid. Right:
no obstacle is inside the ellipsoid, current ellipsoid is the largest one in the free space with the line segment
as the major axis. Several iterations are required to ensure the final ellipsoid excludes all the obstacles.

ellipsoid. As the ellipsoid is inflated in step 2, it touches the obstacles and we construct tangent planes to the
ellipsoid at these points. The tangent plane at a point xr is computed as shown in equation (10). Once we
have completed the process (see Fig. 16), we have a set of half-planes and a polyhedron C is constructed as
the intersection of these half-planes: C = {x | AT

j x ≤ bj , j = 1, . . . ,m}.

Aj = 2E−TE−1(xr − d), bj = AT
j xr (10)

Fig. 17 shows a typical example of a path P and the corresponding safe flight corridor generated using our
algorithm.

p
c

0

p
c

1

Figure 16: Inflation of ellipsoid to generate polyhedron. Left: Find the first intersection point pc
0 for the

ellipsoid with the obstacles and compute the tangent plane at pc
0 (red line). The obstacle points outside the

corresponding halfspace are removed (shadowed). Middle: Expand the ellipsoid and find the next intersection
point pc

1 (original ellipsoid shown with dashed line while the new expanded ellipsoid is shown with solid
line), keep removing obstacle points from the map that are outside the new halfspace. Right: Keep inflating
the ellipsoid until no obstacle remains in the current map, the polyhedron C (blue region) is defined by the
intersection of the halfplanes.

4.3.2 Path Modification

The original path from the planner can be close to the obstacles. Although the trajectory generation does
not require the final trajectory to go through the intermediate points, the path implicitly affects the route
of the trajectory. The path modification step aims to modify the original path away from the obstacle by
keeping the intermediate waypoints in the middle of a safe corridor. We use a bisector plane that passes
through the intermediate waypoint p, this plane intersects both the polyhedra that are connected at p. As a

p0

p1 p2

p3

p4

p0

p1 p2

p3

p4

Figure 17: Generate a Safe flight corridor (blue region) from a given path P = 〈p0 → . . . → p4〉. Left:
find the collision-free ellipsoid for each line segment. Right: dilate each individual ellipsoid to find a convex
polyhedron.

result, the point p is moved to the centroid of the polygon formed by the intersection of the bisector plane
with the polyhedron (Fig. 18(c)).

(a) Grow ellipsoid for each line
segment.

(b) Inflate the ellipsoid to gener-
ate the convex polyhedra.

(c) Modified path P ⋆ through
bisector planes.

Figure 18: We generate the safe corridor by inflating the free region around path. The ellipsoids are shown in
(a), the transparent orange region in (b) shows the polyhedra of safe corridor. The cyan path P ⋆ is modified
from the original path P by shifting the intermediate waypoints to the centroid of bisector planes (blue
polygon in (c)).

4.3.3 Trajectory Optimization

We formulate the trajectory generation as a quadratic optimization problem as shown in (11). The trajectory
is parameterized in time t as Φ(t). Compared to the standard formulation of this problem for quadrotors
(Mellinger and Kumar, 2011), we add a second term in cost function which is the summation of square of
the distance between the trajectory Φ and the given path P . This distance cost is weighted by a factor ǫ.
Fig. 19 shows the affect on trajectory by changing this weighting factor. Thus, we can control the shape of a
trajectory to keep it close to the desired path P and away from obstacles to improve the safety.

argmin
Φ

J =

∫

T

0





∥

∥

∥

∥

∥

d4 Φ(t)

dt4

∥

∥

∥

∥

∥

2

+ ǫ dist(P,Φ(t))2



 dt

s.t. Φ(0) = p0, Φ(T) = pf , Φ(t) ∈ Free space

Φ̇(t) ≤ vmax, Φ̈(t) ≤ amax,
...
Φ(t) ≤ jmax

(11)

(a) ǫ = 0 (b) ǫ = 20 (c) ǫ = 100

Figure 19: The generated trajectories (purple) for different values of the weight ǫ. As we increase the weight,
the trajectory gets closer to the given path (cyan).

4.3.4 Continuous Optimization

In order to solve (11), we have chosen to represent the trajectory Φ(t) as m piecewise nth order polynomial
splines. From our experiments, we have found that n = 7 provides good performance for trajectory
optimization and that increasing n produces similar trajectories, but with longer computational time. Also
we define the indices: i ∈ {0, . . . , n}, j ∈ {1, . . . ,m}.

Each spline segment Φj takes time ∆j such that the time for the whole trajectory T is calculated by
T =

∑

j ∆j . We can write Φj with respect to coefficients αij and basis functions pi as

Φj(t) =
∑

i

αijpi(t) (12)

We reparametrize time such that we have unit time scaling for each segment,

s(t) =

t−
q−1
∑

j=1

∆j

∆q

(13)

where q ∈ {1, . . . ,m} is chosen according to the segment such that s ∈ [0, 1].

We select the basis functions pi such that,

d4

ds4
pi(s) = P̃i−4(s) for i ∈ {4, . . . , n} (14)

where P̃i(s) is the ith shifted Legendre polynomial. This leaves the first four basis functions undefined, for
which we just use:

pi(s) = si for i ∈ {0, . . . , 3} (15)

Note that the evaluation of any derivative of Φj is linear with respect to α

dr

dtr
Φj(t) =

∑

i

αij ·
dr

dtr
pi(t) = (∆j)

−r
∑

i

αij ·
dr

dsr
pi(s) (16)

This results in the first part of the cost function in (11) to be quadratic in α

J1 =

∫

T

0

∥

∥

∥

∥

∥

d4

dt4
Φ(t)

∥

∥

∥

∥

∥

2

dt =
∑

ij

α2
ij

(∆j)
−8

2i+ 1
(17)

To ensure continuity of our spline up to the first three derivatives, we need to add the following constraints
for j ∈ {1, . . . ,m− 1} and r ∈ {0, . . . , 3}:

(∆j)
−r
∑

i

αij ·
dr

dsr
pi(s)

∣

∣

∣

∣

s=1

= (∆j+1)
−r
∑

i

αi(j+1) ·
dr

dsr
pi(s)

∣

∣

∣

∣

s=0

(18)

The start and end constraints are represented as

(∆1)
−r
∑

i

αi1 · dr

dsr pi(s)
∣

∣

∣

s=0
= dr

dtr p0

(∆m)−r
∑

i

αim · dr

dsr pi(s)
∣

∣

∣

s=1
= dr

dtr pf
(19)

For the inequality constraints and the centering part of the cost functional, we use the sub-sampling method
proposed by (Mellinger and Kumar, 2011). Along each segment, we can select g points at which to sample
the trajectory. In practice we found that uniformly sampling g = 10 points within interval [0, 1] worked well.
We denote sg as these sampled points in the following discussion.

The inequality constraints are of the form

dr

dtr
Φj(sg) ·Aj ≤ bj ∀ g, ∀ j ∈ {1, . . . ,m} (20)

where Aj and bj come from the polyhedra found in 4.3.1 for r = 0 and L1 bounds on the dynamics for r > 0
(Boyd and Vandenberghe, 2004).

To compute the second part of the cost in (11), we found that rectangular integration (Press, 1992) worked
well

J2 = ǫ
∑

jg

(

lj · Φj(sg)
∥

∥lj
∥

∥

)2

(21)

where lj = {ajx+ bjy + cjz + dj = 0} is the corresponding line segment.

Combining the above equations, we can see that (11) is equivalent to the following QP in α

min
α

αTQα Eqn. 17 + Eqn. 21

s.t Aα = b Eqn. 18 and Eqn. 19
Cα ≤ d Eqn. 20

(22)

Note that choosing ∆j is critical to the feasibility of Equation (22) and the quality of the resultant trajectory.
To choose the ∆j we use the times we get by fitting a trapezoidal velocity profile through the segments, so
the time per segment is based on the length of each line segment lj in the path through the environment.

5 Experimental Results

5.1 Estimation benchmarking

The main task for the robot is to fly long distances to a goal point, so the estimation accuracy is very
important. The drift in the estimator should be low so that the robot reaches the desired goal. In order to
test the accuracy and drift in the estimator, we flew the robot in the motion capture space in the lab. The
robot was flown manually along an aggressive trajectory reaching speeds of up to 4m/s and accelerations of

4m/s2. The plots of the estimated and ground-truth position and velocity as shown in Figure 20. As can
be seen from the figure, the final drift after more than 60m of flight is less than 0.6m, giving us a drift of
around 1%. Note that there is almost no drift in the Z-axis due to the use of the downward pointing distance
sensor, which gives us an accurate height estimate.

(a) Position (b) Velocity

Figure 20: Plots of position and velocity from our estimation system compared to ground truth from motion
capture.

The SVO framework was deployed on our MAV system for visual odometry using a forward-facing stereo
camera configuration and onboard computation. As a demonstration of the accuracy of the motion estimation,
some high-speed maneuvers were flown manually in a warehouse environment. The MAV accelerated
aggressively along a 50m straight aisle in the warehouse, braked aggressively to a stop, and then returned
to the starting location at a moderate speed. Figure 21 shows several onboard camera images marked up
with the features that SVO is tracking, as well as the sparse map of 3D points in the environment that were
mapped during this trajectory. During this trial, the MAV reached a maximum speed of over 15m/s, as
shown in Fig. 22 even with such an aggressive flight, SVO only incurs around 2m of position drift over the
more than 100m trajectory.

(a) Onboard image with features during
hover

(b) Onboard image with features during
aggressive flight

(c) Map of sparse 3D points

Figure 21: Camera images from onboard the MAV show good feature tracking performance from SVO, even
at high speed. The resulting sparse map of 3D points that have been triangulated is consistent and metrically
accurate with the actual structure of the environment.

0 5 10 15 20 25 30 35 40 45
Time [s]

10

0

10

20

30

40

50

Po
si

tio
n

[m
]

x
y
z

(a) Estimated position of the MAV

0 5 10 15 20 25 30 35 40 45
Time [s]

20
15
10

5
0
5

10
15
20

Ve
lo

ci
ty

 [m
/s

]

x
y
z

0 5 10 15 20 25 30 35 40 45
Time [s]

0

5

10

15

20

Ve
lo

ci
ty

 [m
/s

]

Velocity Magnitude

(b) Estimated velocity of the MAV

Figure 22: Motion estimation of the MAV during a high-speed, straight line trajectory. SVO provides a
smooth pose estimate of this aggressive flight, which reached a speed of over 15m/s over 50m.

Table 3: Approximate CPU usage of the individual components of the system.

Component CPU Usage

Visual odometry 35%
Planner 10%
Mapping 10%

Sensor drivers 8%
UKF 7%

Control 5%
State machine 5%

Total 80%

5.2 Real World Tests

The quadrotor navigation system described in this paper has been tested extensively in the lab environment
as well as in multiple real-world environments. The system has been used on our entry for the first test of the
DARPA Fast Lightweight Autonomy (FLA) program and was able to successfully navigate multiple obstacle
courses that were set up. The rules of the FLA program do not allow any human interaction after the robot
is airborne, so the runs described in this section were fully autonomous.

The test environment was constructed so as to simulate the inside of a warehouse. There were two aisles
separated by scaffolding of around 5m height with tarps on the back of the scaffolding and boxes placed
on the shelves. The total length of the test course was around 65m while the width of each of the aisles,
in between the scaffoldings, was 3m. Different types of obstacles such as a scaffolding tower or scissor lifts
were placed along the aisles in order to test the obstacle avoidance performance of the robot. The minimum
clearance between the obstacle in the aisle and the scaffolding on the side was set to be 2.1m. As a reference,
the rotor tip-to-tip diameter of the platform is 0.76m. An example of the obstacles along the aisle is shown
in Figure 23.

Different types of obstacle courses were set up using the aisles and the obstacles in order to challenge the
robot. The simplest task was to just go straight down an empty aisle, while the most complicated ones
involved changing aisles due to the first aisle being blocked in the middle. The only prior information available
for each task was the type of obstacles to expect along the course, but the actual layout of the test course was

(a) An example obstacle course. The goal was to get
to the other end of the aisle. The different types of
obstacles along the length of the aisle can be seen.

(b) Snapshot of the local 3D map. The color repre-
sents height, going from red on the floor to blue at
4m height and the axes in the middle of the figure
represents the location of the robot.

Figure 23: An example obstacle course that the robot had to get through and a snapshot of the local 3D
map constructed using the nodding laser as the robot was traversing the course. The robot was right next to
the tower obstacle when the snapshot of the local map was taken. The tower obstacle (on the left) and the
scissor lift (further away on the right) can be clearly seen in the 3D map.

unknown. The goal position was specified as a bearing and a range from the starting position at the start of
each run. A particular task was deemed complete only when we were able to complete three successful runs
of the task with different obstacle course layouts, thus ensuring that our system can work robustly. In the
following, we describe some of the specific tasks and also show results of our runs through them.

5.2.1 Slalom

In the slalom task, the obstacles in an aisle were arranged in a manner such that robot is forced to move in a
zigzag manner along the aisle, going to the right of the first obstacle, then left of the second, one and so on.
Figure 24 shows the result of one of our runs. Since there was no ground truth position data available, the
only way to judge the performance of the system is to compare the map created by the robot with a map of
the real obstacle course. From the figure, we can see that the projected map (in grey) matches the actual
obstacle course layout (in black) showing the accuracy of our estimation and control algorithms.

5.2.2 Aisle change with 45◦ transition

In this task, the robot was required to change from the first aisle to the second one since the first aisle was
blocked in the middle. The opening between the first and second aisles was constructed such that the robot
could move diagonally along a 45◦ line from the first aisle into the second aisle. Figure 25 shows one of our
runs for this task. The robot successfully completes the transition and starts moving along the second aisle.
Note that the goal was still in line with the first aisle, so the robot is always looking to move towards the left
in order to get closer to the goal. This causes it to remain in the left part of the second aisle as is observed in
the figure. After crossing the second aisle, the robot moves back to the left to reach the goal. Again we can
see that the projected map (in grey) matches the actual course layout (in black).

Figure 24: One of our runs for the slalom task. In black we show the actual obstacle course layout. The
hollow obstacles in the aisle are similar to the tower shown in Figure 23 while the filled black ones are scissor
lifts. The gray regions are the projection of map created by the robot onto the 2D plane. The robot starts
near the opening on the left and has to reach the target represented by the black rectangle on the right.
The path of the robot shows it moving in a zigzag fashion in order to avoid the obstacles. Each grid cell is
5m× 5m.

Figure 25: One of our runs for the aisle change with 45◦ transition task. In black we show the actual obstacle
course layout. The small filled black objects along the aisles are short obstacles that the robot could fly over.
The gray regions are the projection of map created by the robot onto the 2D plane. The robot starts near
the opening on the left and has to reach the target represented by the black rectangle on the right. Each grid
cell is 5m× 5m.

5.2.3 Aisle change with 90◦ transition

This task was just a more challenging variation of the previous one. Here the aisle change required the robot
to move sideways (see Figure 26). We were able to reach the goal, but our system did not perform very
well for this task. As can be seen from the figure, the state estimate had small jumps and drifted during
the transition between the aisles. There is some position drift but the main issue is the drift in yaw. Since
the distance to the goal is large, even small drifts in yaw correspond to large position errors when the robot
reaches the goal. The main reason for this drift was that when moving sideways in front of the obstacle
during the transition, the vision system lost all the tracked features in the image and as it entered the second
aisle, got new features which were far from the camera since it was looking along the aisle. Since the new
features were far from the camera, they could not be triangulated accurately and hence caused bad estimates
from the vision system. During this phase, there were a number of jumps in the output of vision system and
hence led to drifts in the state estimate. As the robot started moving forward after the transition, the vision
system was able to triangulate more features along the corridor and get good estimates again. This issue
does not occur for the 45◦ transition case since the robot is able to see some part of the second aisle when
moving diagonally and hence already has well triangulated features when it is completes the transition into
the second aisle. One way to help with this issue would be to make the robot orient itself such that it is
always facing the direction along which it is moving.

Figure 26: One of our runs for the aisle change with 90◦ transition task. In black we show the actual obstacle
course layout. The small filled black objects along the aisles are short obstacles that the robot could fly over.
The gray regions are the projection of map created by the robot onto the 2D plane. The robot starts near
the opening on the left and has to reach the target represented by the black rectangle on the right. Each grid
cell is 5m× 5m.

5.3 High speed flight

In order to test the high speed capability of the system, we performed a test run in an aisle with no obstacles.
The goal provided to the robot was to go straight for a distance of 65m. We were able to fly at speeds of
up to 7m/s and reach the desired goal position. A plot of the desired and estimated position and velocity
is shown in Figure 27, which shows that the performance of our controller is good enough to track such
aggressive trajectories. The initial section of the plots, from 0–4 s, is the autonomous takeoff and the forward
trajectory begins at t = 4 s. There was no source of ground truth during the test but based on the expected
location of the goal, the net drift in the position estimates was less than 2m.

(a) Position (b) Velocity

Figure 27: Plots showing the control performance when running the full navigation system in an empty aisle.
During the flight, the robot reaches speeds of up to 7m/s.

6 Discussion and Conclusion

In this work, we developed a system that allows a quadrotor to navigate autonomously in GPS-denied and
cluttered environments. Our navigation system consists of a set of modules that work together in order to
allow the robot to go from a starting position to a specified goal location while avoiding obstacles on the way.
After developing our system, we found the following points especially important in order to successfully build
such a system:

• Modular architecture: During our development process, each of the modules were separately
developed. This was made possible by defining proper interfaces between the modules and using
message passing to communicate among them. We used ROS as the framework for all the software
running on the robot since it was designed to solve this exact problem. This separation of the modules
allowed most of the planner development to happen in a simulator while the estimation and control
modules were being developed. This accelerated the development since different modules could be
implemented and tested in parallel.

• Sensor selection: The choice of sensors used for estimation and mapping plays an important role
in determining the robustness of the system. As shown in Table 2, there are various advantages
and disadvantages of different camera configurations for visual odometry. We selected a stereo
configuration for our system since it provides increased robustness over a monocular camera setup,
which is gaining popularity among the research community due to its minimalistic nature and also
allows us to have simpler algorithms compared to multi-camera systems. The use of a dedicated
height sensor makes it possible to maintain altitude even when there is drift in our visual odometry,
allowing the robot to safely fly without hitting the ground or going too high. However, the downward
pointing height sensor has jumps in the measurement when the robot goes over obstacles and this
has to be properly taken care of in the sensor fusion module. For mapping, instead of using a fixed
lidar, we mounted it on a servo in order to sweep it up and down allowing us to create 3D maps and
navigate in 3D environments with obstacles above and below the robot. With a fixed lidar we would
not have been able to safely avoid all the obstacles that we encountered during the tests.

• Local map for planning: Using a local map for planning instead of a global map was a crucial
decision in the design of our planner. The problem with creating a global map is that we need
to explicitly maintain global consistency by making use of loop closures to eliminate drifts. By
comparison, the local map approach helps the planner tolerate drifts in the state estimation since the
drift is small in the short period of time that the local map is constructed in. This can be seen clearly
in Figure 26 where there is large drift in the yaw but the robot is still able to reach the goal. This
also helps in reducing the computational complexity and allows us to run the planner at a higher
rate. Faster replanning reduces the latency between an obstacle being seen by the mapping system
and the robot reacting to it, thus improving the robustness of the system.

In addition to these positive points, we learned some lessons during the tests in the warehouse environment.

• Drift in the visual odometry: The tests in the warehouse environment involved flying long
trajectories while constantly moving forward. Since the floor of the building was smooth and did not
have texture, very few image features could be detected on it. This led to most of our image features
coming from the obstacles to the side and front of the robot. We even picked up edgelet features
from structures on the ceiling of the building. Thus a large part of the image features were at a
large distance from the robot. In order to get good depth estimates of these far-away features, either
the stereo baseline needs to be large or there needs to be sufficient parallax between the feature
observations due to the motion between frames. We were limited to a 0.2m stereo baseline due to
the size of the robot. When moving along the long aisles, the image features were mainly in front of
the robot, which sometimes led to insufficient parallax to get good depth estimates for the features.
Due to the poor depth estimates for some of the features, the visual odometry was not able to detect

the correct scale of the motion between frames, which led to drift in the estimates. This caused a
failure to reach the goal in some cases. One solution to this is to have a more tightly coupled visual
odometry system where the accelerometer measurement is also used in order to provide another
source of scale for the visual odometry system.

• Local map size: One factor that prevents us from reaching high speeds is the size of the map used
for planning. Since we want to generate dynamically feasible trajectories for the robot, we have to
take into account the maximum acceleration that the robot can safely achieve. Also, in order to
guarantee safety, we have to plan trajectories such that the robot comes to a halt at the end of the
known map since there can be undiscovered obstacles just outside the map. Thus, the combination
of a map size and maximum acceleration puts a limit on the maximum speed that the robot can
reach. The main factor limiting our local map size is the time required to plan in that map. The
majority of the time in each planning step is taken by the A∗ algorithm, which is used to find a path
through the hybrid graph (as described in Section 4). In order to reduce this time, we are looking
into using better heuristics for A∗ and other techniques such as Jump Point Search (Harabor and
Grastien, 2011) which can significantly speed up the graph search.

In conclusion, we have presented a solution that consists of all the modules that are required for fast
autonomous navigation of an aerial robot through an unknown environment. The system has been designed
such that all the sensing and computation occur onboard the robot. Once the robot has been launched, there
is no human interaction necessary for the robot to navigate to the goal.

The system has been thoroughly tested in the lab as well as in the warehouse environment that was set up as
part of the DARPA FLA program. Our robot was able to successfully navigate the various obstacle courses
that were specifically designed to challenge the navigation system. The only input from the operator for each
run was the goal position relative to the starting position. In fact, during some of the runs, we even lost the
communication link between the base station (which was only used for monitoring purposes) and the robot,
due to the long distance and the large scaffolding structures in between, but the robot kept on going and
successfully completed the task.

The final goal is to be able to fly at speeds of more than 10m/s through cluttered environments, and we
believe that it would require more work in all the individual modules that make up the system. In estimation,
we need to reduce the drift that the visual odometry system experiences when flying fast while following long
trajectories. In control, we need to incorporate aerodynamic effects such as drag, which become increasingly
important when flying fast. In the mapping part, the nodding lidar solution needs to be replaced by one
which provides a denser representation of the environment in order to detect small obstacles reliably. And
finally, the planning subsystem needs to be sped up in order to allow us to use a larger map for planning and
also to allow faster replanning in order to make the system more robust. As these developments are made,
we would be able to incorporate them into our system due to the modular architecture, thus providing a
strong foundation for future research.

Acknowledgments

We gratefully acknowledge support from DARPA grants HR001151626/HR0011516850.

References

Achtelik, M., Bachrach, A., He, R., Prentice, S., and Roy, N. (2009). Stereo vision and laser odometry for
autonomous helicopters in gps-denied indoor environments. In Proc. SPIE 7332, Unmanned Systems
Technology XI, pages 733219–733219–10.

Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., Willmann, J., Gramazio, F.,

Kohler, M., and D’Andrea, R. (2014). The Flight Assembled Architecture installation: Cooperative
construction with flying machines. IEEE Control Systems Magazine, 34(4):46–64.

Bachrach, A., He, R., and Roy, N. (2009). Autonomous flight in unknown indoor environments. International
Journal of Micro Air Vehicles, 1(4):217–228.

Bachrach, A., Prentice, S., He, R., and Roy, N. (2011). RANGE – Robust Autonomous Navigation in
GPS-Denied Environments. Journal of Field Robotics, 28(5):644–666.

Bellingham, J., Richards, A., and How, J. P. (2002). Receding horizon control of autonomous aerial vehicles.
In Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), volume 5, pages
3741–3746 vol.5.

Bloesch, M., Omari, S., Hutter, M., and Siegwart, R. (2015). Robust visual inertial odometry using a direct
ekf-based approach. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 298–304.

Blösch, M., Weiss, S., Scaramuzza, D., and Siegwart, R. (2010). Vision based mav navigation in unknown
and unstructured environments. In 2010 IEEE International Conference on Robotics and Automation,
pages 21–28.

Bouabdallah, S., Murrieri, P., and Siegwart, R. (2004). Design and control of an indoor micro quadrotor.
In Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on,
volume 5, pages 4393–4398 Vol.5.

Bouabdallah, S. and Siegwart, R. (2005). Backstepping and sliding-mode techniques applied to an indoor
micro quadrotor. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
pages 2247–2252.

Bouabdallah, S. and Siegwart, R. (2007). Full control of a quadrotor. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 153–158.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, New York, NY,
USA.

Bry, A., Richter, C., Bachrach, A., and Roy, N. (2015). Aggressive flight of fixed-wing and quadrotor aircraft
in dense indoor environments. The International Journal of Robotics Research, 34(7):969–1002.

Deits, R. and Tedrake, R. (2015a). Computing large convex regions of obstacle-free space through semidefinite
programming. In Algorithmic Foundations of Robotics XI, pages 109–124. Springer.

Deits, R. and Tedrake, R. (2015b). Efficient Mixed-Integer Planning for UAVs in Cluttered Environments. In
2015 IEEE International Conference on Robotics and Automation (ICRA), pages 42–49.

Escareno, J., Salazar-Cruz, S., and Lozano, R. (2006). Embedded control of a four-rotor uav. In 2006
American Control Conference, pages 6 pp.–.

Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). SVO: Fast semi-direct monocular visual odometry. In
IEEE International Conference on Robotics and Automation (ICRA).

Forster, C., Zhang, Z., Gassner, M., Werlberger, M., and Scaramuzza, D. (To appear, 2017). SVO: Semi-Direct
Visual Odometry for Monocular and Multi-Camera Systems. IEEE Transactions on Robotics.

Grzonka, S., Grisetti, G., and Burgard, W. (2009). Towards a navigation system for autonomous indoor
flying. In 2009 IEEE International Conference on Robotics and Automation, pages 2878–2883.

Guenard, N., Hamel, T., and Moreau, V. (2005). Dynamic modeling and intuitive control strategy for an
“X4-flyer”. In 2005 International Conference on Control and Automation, volume 1, pages 141–146.

Harabor, D. and Grastien, A. (2011). Online graph pruning for pathfinding on grid maps. In Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI’11, pages 1114–1119. AAAI Press.

He, R., Prentice, S., and Roy, N. (2008). Planning in information space for a quadrotor helicopter in a
gps-denied environment. In 2008 IEEE International Conference on Robotics and Automation, pages
1814–1820.

Hoffmann, G., Huang, H., Waslander, S., and Tomlin, C. (2007). Quadrotor helicopter flight dynamics and
control: Theory and experiment. In AIAA Guidance, Navigation and Control Conference and Exhibit,
page 6461.

Jones, E. S. and Soatto, S. (2011). Visual-inertial navigation, mapping and localization: A scalable real-time
causal approach. The International Journal of Robotics Research, 30(4):407–430.

Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. (1995). A new approach for filtering nonlinear
systems. In American Control Conference, Proceedings of the 1995, volume 3, pages 1628–1632 vol.3.

Karydis, K. and Kumar, V. (2016). Energetics in robotic flight at small scales. Interface Focus, 7(1).

Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In Proc. Sixth
IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’07), Nara, Japan.

Lee, T., Leok, M., and McClamroch, N. H. (2010). Geometric Tracking Control of a Quadrotor UAV on
SE(3). In 2010 49th IEEE Conference on Decision and Control (CDC), pages 5420–5425.

Liu, S., Watterson, M., Mohta, K., Sun, K., Bhattacharya, S., Taylor, C. J., and Kumar, V. (2017). Planning
dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environments.
IEEE Robotics and Automation Letters, 2(3):1688–1695.

Liu, S., Watterson, M., Tang, S., and Kumar, V. (2016). High speed navigation for quadrotors with limited
onboard sensing. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages
1484–1491.

Meier, L., Honegger, D., and Pollefeys, M. (2015). PX4: A Node-Based Multithreaded Open Source Robotics
Framework for Deeply Embedded Platforms. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 6235–6240.

Mellinger, D. and Kumar, V. (2011). Minimum Snap Trajectory Generation and Control for Quadrotors. In
2011 IEEE International Conference on Robotics and Automation, pages 2520–2525.

Mellinger, D., Kushleyev, A., and Kumar, V. (2012). Mixed-Integer Quadratic Program Trajectory Generation
for Heterogeneous Quadrotor Teams. In 2012 IEEE International Conference on Robotics and Automation,
pages 477–483.

Michael, N., Mellinger, D., Lindsey, Q., and Kumar, V. (2010). The GRASP Multiple Micro-UAV Testbed.
IEEE Robotics & Automation Magazine, 17(3):56–65.

Mohta, K., Turpin, M., Kushleyev, A., Mellinger, D., Michael, N., and Kumar, V. (2016). QuadCloud: A
Rapid Response Force with Quadrotor Teams, pages 577–590. Springer International Publishing.

Mourikis, A. I. and Roumeliotis, S. I. (2007). A Multi-State Constraint Kalman Filter for Vision-aided
Inertial Navigation. In Proceedings 2007 IEEE International Conference on Robotics and Automation,
pages 3565–3572.

Mulgaonkar, Y., Whitzer, M., Morgan, B., Kroninger, C. M., Harrington, A. M., and Kumar, V. (2014). Power
and weight considerations in small, agile quadrotors. In Proc. SPIE 9083, Micro- and Nanotechnology
Sensors, Systems, and Applications VI, volume 9083, pages 90831Q–90831Q–16.

Mur-Artal, R., Montiel, J. M. M., and Tardós, J. D. (2015). ORB-SLAM: A Versatile and Accurate Monocular
SLAM System. IEEE Transactions on Robotics, 31(5):1147–1163.

Nuske, S., Choudhury, S., Jain, S., Chambers, A., Yoder, L., Scherer, S., Chamberlain, L., Cover, H., and
Singh, S. (2015). Autonomous Exploration and Motion Planning for an Unmanned Aerial Vehicle
Navigating Rivers. Journal of Field Robotics, 32(8):1141–1162.

Press, W. H., editor (1992). Numerical recipes in C: the art of scientific computing. Cambridge University
Press, Cambridge ; New York, 2nd ed edition.

Richter, C., Bry, A., and Roy, N. (2016). Polynomial trajectory planning for aggressive quadrotor flight in
dense indoor environments. In Robotics Research, pages 649–666. Springer.

Schmid, K., Lutz, P., Tomić, T., Mair, E., and Hirschmüller, H. (2014). Autonomous vision-based micro air
vehicle for indoor and outdoor navigation. Journal of Field Robotics, 31(4):537–570.

Shen, S., Michael, N., and Kumar, V. (2011). Autonomous Multi-Floor Indoor Navigation with a Computa-
tionally Constrained MAV. In 2011 IEEE International Conference on Robotics and Automation, pages
20–25.

Shen, S., Mulgaonkar, Y., Michael, N., and Kumar, V. (2013). Vision-based state estimation and trajectory
control towards high-speed flight with a quadrotor. In Proceedings of Robotics: Science and Systems,
Berlin, Germany.

Theys, B., Dimitriadis, G., Hendrick, P., and Schutter, J. D. (2016). Influence of propeller configuration on
propulsion system efficiency of multi-rotor unmanned aerial vehicles. In 2016 International Conference
on Unmanned Aircraft Systems (ICUAS), pages 195–201.

Thomas, J., Loianno, G., Polin, J., Sreenath, K., and Kumar, V. (2014). Toward autonomous avian-inspired
grasping for micro aerial vehicles. Bioinspiration & Biomimetics, 9(2):025010.

Valenti, R. G., Dryanovski, I., Jaramillo, C., Ström, D. P., and Xiao, J. (2014). Autonomous quadrotor
flight using onboard rgb-d visual odometry. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 5233–5238.

Wan, E. A. and Merwe, R. V. D. (2000). The Unscented Kalman Filter for Nonlinear Estimation. In
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control
Symposium (Cat. No.00EX373), pages 153–158.

Watterson, M. and Kumar, V. (2015). Safe receding horizon control for aggressive MAV flight with limited
range sensing. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3235–3240.

Wolff, E. M., Topcu, U., and Murray, R. M. (2014). Optimization-based Trajectory Generation with Linear
Temporal Logic Specifications. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 5319–5325.

Özaslan, T., Mohta, K., Keller, J., Mulgaonkar, Y., Taylor, C. J., Kumar, V., Wozencraft, J. M., and Hood,
T. (2016). Towards fully autonomous visual inspection of dark featureless dam penstocks using MAVs. In
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4998–5005.

	Introduction
	System Design
	Platform Design
	Sensing, Computation and Communication
	Software Architecture

	Estimation and Control
	Visual Odometry
	Overview of SVO
	Motion Estimation
	Mapping
	Implementation Details

	Sensor Fusion
	Control

	Mapping and Planning
	Mapping
	Path Planning
	Trajectory Generation
	Regional Inflation by Line Segments
	Path Modification
	Trajectory Optimization
	Continuous Optimization

	Experimental Results
	Estimation benchmarking
	Real World Tests
	Slalom
	Aisle change with 45 ° transition
	Aisle change with 90 ° transition

	High speed flight

	Discussion and Conclusion

