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Jeffrey Delmerico, Titus Cieslewski, Henri Rebecq, Matthias Faessler, and Davide Scaramuzza.

Abstract— Despite impressive results in visual-inertial state
estimation in recent years, high speed trajectories with six
degree of freedom motion remain challenging for existing
estimation algorithms. Aggressive trajectories feature large
accelerations and rapid rotational motions, and when they
pass close to objects in the environment, this induces large
apparent motions in the vision sensors, all of which increase
the difficulty in estimation. Existing benchmark datasets do
not address these types of trajectories, instead focusing on slow
speed or constrained trajectories, targeting other tasks such
as inspection or driving. We introduce the UZH-FPV Drone
Racing dataset, consisting of over 27 sequences, with more
than 10 km of flight distance, captured on a first-person-view
(FPV) racing quadrotor flown by an expert pilot. The dataset
features camera images, inertial measurements, event-camera
data, and precise ground truth poses. These sequences are
faster and more challenging, in terms of apparent scene motion,
than any existing dataset. Our goal is to enable advancement
of the state of the art in aggressive motion estimation by
providing a dataset that is beyond the capabilities of existing
state estimation algorithms.

SUPPLEMENTARY MATERIAL

The dataset is available at http://rpg.ifi.uzh.
ch/uzh-fpv

I. INTRODUCTION

High-quality, large-scale, and task-driven benchmarks are
key to pushing the research community forward. A well-
known and compelling example can be found in autonomous
driving, where the introduction of multiple datasets and
benchmarks ([1], [2], [3], [4]) triggered drastic improvements
of various low-level algorithms (visual odometry, stereo,
optical flow), leading to impressive results on these bench-
marks. These improvements ended up finding applications
not only in autonomous driving, but also in many other tasks,
benefiting the vision community as a whole. Yet, can we
conclude that low-level vision is solved? Our opinion is that
the constraints of autonomous driving—which have driven
the design of the current benchmarks—do not set the bar
high enough anymore: cars exhibit mostly planar motion
with limited accelerations, and can afford a high payload
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Fig. 1: We present a drone racing dataset containing syn-
chronized IMU, camera and event camera data recorded
in indoor and outdoor environments. The dataset exhibits
the largest optical flow magnitudes (pixel displacement per
second) among all visual-inertial datasets to date. Figs. 1a,1d:
preview images from the high-quality onboard fisheye cam-
era. Figs. 1b,1e: visualization of the asynchronous event
stream for in the outdoor (resp. indoor) sequence, obtained by
integrating events over a temporal window of ∆t = 30 ms
(resp. ∆t = 10 ms) (blue: positive events, red: negative
events). Figs. 1c,1f: color-coded magnitude of the optical
flow (blue is small, red is large).

and compute. So, what is the next challenging problem? We
posit that drone racing represents a scenario in which low
level vision is not yet solved. The fast, six-degree-of-freedom
trajectories that occur in drone races, with high accelerations
and rapid rotations, are beyond the capabilities of the current
state of the art in state estimation. The purpose of this dataset
is to spur innovation toward solutions to state estimation
under these challenging conditions.

Very recently, there has been tremendous enthusiasm for
autonomous drone racing in the research community due to
the research challenges posed by agile flight, including the
now annual IROS Autonomous Drone Race [5], [6]. More
generally, high-speed robot navigation in cluttered, unknown
environments is currently a very active research area [7], [8],
[9], [10], [11], [12], [13] and funding of over 50 million
US dollars has been made available through the DARPA
Fast Lightweight Autonomy Program (2015-2018) and the
DARPA Subterranean Challenge (2018-2021).

However, drone racing did not begin in research or indus-
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trial labs, but rather grew from a community of passionate
amateurs. These First Person View (FPV) hobbyists devel-
oped an expertise in the design of agile quadrotor platforms
flown by trained human pilots, beginning a new sport now
known as drone racing. The growth of the sport has been
rapid, with a corresponding boom in the business of racing as
well [14] , including the introduction of professional leagues
and an international competition with a million dollar prize
bounty for human pilots [15]. This expansion of the sport is
beginning to benefit the research community, with crossover
projects such as the recently announced AlphaPilot Innova-
tion Challenge, a competition sponsored jointly by Lockheed
Martin and the Drone Racing League where autonomous
drones must navigate race courses, featuring over 2 million
US dollars in cash prizes [16].

Expert human FPV pilots are proof that autonomous drone
racing should be possible with minimal sensing. However, we
are still far from achieving human-level performance with
autonomous drones. The constraints are truly demanding:
drone racing requires platforms with a limited payload for
sensors and limited computational power to track aggressive
and agile 6-DOF maneuvers with low latency, while con-
trolling for complex aerodynamics. For these reasons, we
believe that pushing the limits of drone racing is a compelling
research problem to move the research community forward.
The algorithms needed to achieve good visual tracking in
the challenging drone racing scenario will highly benefit
robotics in general, and will contribute to multiple areas such
as autonomous transportation, disaster relief, or even space
exploration. However, there exist no drone racing datasets
with ground truth trajectories available to the community
at the current time. In fact, the only existing drone flight
datasets (EuRoC [17], MVSEC [18], Zurich Urban MAV
Dataset [19]) were not designed for aggressive flight, mostly
because the mobile recording platforms for these datasets
mount numerous bulky sensors (LIDAR, stereo cameras,
etc.), which did not allow them to perform the aggressive
and agile maneuvers that are required for drone racing.

The recently released Blackbird Dataset [20] does target
aggressive flight, using a motion capture system for closed-
loop control of fast UAV trajectories in an indoor flying
room, while rendering photorealistic images of synthetic
scenes to pair with the IMU measurements onboard the
UAV. While Blackbird improves on the previous datasets
in terms of speed and aggressiveness, and moves the state
of the art in the direction of autonomous drone racing, its
trajectories are constrained by the dimensions of the motion
capture room, limiting their maximum speed. The Blackbird
dataset offers some appealing properties, including a large
number of sequences, a variety of simulated environments,
and high-rate motion capture ground truth, but the UZH-FPV
Drone Racing dataset significantly increases the challenge
and realism for drone racing, with trajectories that are faster
and longer (see Sec. II), and more importantly, from real-
world scenarios (i.e., not synthetic ones).

A. Contributions

In this work, we propose to bridge this gap by introducing
the first “research-ready” dataset specifically targeted at fast,
aggressive, and agile quadrotor maneuvers such as those
required for drone racing. To that end, we combine recent
developments in hardware and sensors, and build on top of
the wisdom the hobbyist FPV community has developed,
in order to bring high speed drone racing into the research
world. Specifically, our dataset contains sequences recorded
by sensors onboard a drone racing quadrotor flown aggres-
sively by an expert human pilot in various indoor and out-
door race courses with the sequences split between forward
and 45° down camera orientations. For each sequence, we
provide the ground truth 6-DOF trajectory flown, together
with onboard images from a high-quality fisheye camera,
inertial measurements, and events from an event camera.
Event cameras are novel, bio-inspired sensors which measure
changes of luminance asynchronously, in the form of events
encoding the sign and location of the brightness change on
the image plane (more details can be found in Section III-
B.0.a). Their outstanding properties (high dynamic range,
robustness to motion blur, low latency) make them perfectly
suited for estimating high speed camera motions, but research
into state estimation algorithms with event cameras is not yet
well developed. With this dataset, we also intend to foster
further research in this exciting area.

II. AGGRESSIVE FLIGHT

In previous datasets for vision-based state estimation, the
metric to quantify the difficulty for this task has been linear
and rotational velocity [22], [18]. However, the challenge
in visual navigation is not so much the absolute velocity
of the camera, but rather the apparent motion of the scene
in the image plane. For example, a drone equipped with a
downward-looking VGA sensor (640x480 pixels) with a 90
deg FOV lens, flying at 10m

s will be able to estimate its
pose much easier at an altitude of 10m (resulting optical
flow magnitude: ' 320 px/s) than at an altitude of 10cm
(' 32000 px/s!). Hence, we propose to use the magnitude of
the optical flow as a metric to quantify the level of difficulty
of different datasets. We hope that we can motivate the
community to adopt this metric, which in our view is a more
objective metric for expressing how “fast” a visual dataset is.
Aside from more directly expressing the difficulty of visual
motion estimation, it also allows us to combine translational
and rotational motion in a single quantity.

However, optical flow varies across the image, especially
when the camera is oriented in the direction of motion.
In that case, even the fastest (forward) motion would have
close to 0 optical flow in parts of the image (specifically,
in the region close to the focus of expansion). Therefore,
we report the distribution of the optical flow in: a) pixels
per second, b) pixels normalized by the image diagonal
per second, and c) pixels normalized by the camera focal
length per second. Pixels per second is the most direct
way of measuring the optical flow, but depends on the
image resolution of the sensor. To be more objective for
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(b) Resolution-normalized Flow
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(c) Focal-length-normalized Flow

Fig. 2: Optical flow comparison to [17], [18], [21] using the Snapdragon camera from our dataset. We report three metrics: (a)
standard flow in pixels per second, (b) resolution-normalized flow (flow in pixels per second divided by the image diagonal in
pixels) and (c) focal-length-normalized flow (flow divided by the focal length of the camera in pixels). Resolution-normalized
flow depends on the field of view and is related to how long features stay in the image. Focal-length-normalized flow is
independent of the resolution and field of view. For all three metrics, a higher value means more optical flow.

0 200 400 600 800 1000 1200 1400
Frame #

0

200

400

600

800

1000

1200

Fl
ow

 [p
x/

s]

Flow profile oct21_5, window 20
50
70
90

(a) Outdoor 5
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(b) Outdoor 13
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(c) Indoor 6

Fig. 3: Evolution of the optical flow distribution over time. We report the (50, 70, 90) percentiles per image, averaged over
a window of 20 subsequent images to make the plots easier to read.

different sensor configurations, we normalize over the image
resolution. We use the image diagonal to account for the
fact that different datasets use cameras with different aspect
ratios. This metric for optical flow is loosely coupled to how
long features that are tracked remain in the image. However,
resolution-normalized optical flow still depends on the field
of view of the camera. To obtain a metric that is completely
independent of the camera, we also consider the optical
flow normalized by the focal length of the camera, which
expresses the optical flow in the normalized image plane.

When comparing datasets, we combine the distribution of
optical flow over the images and the distribution over time
into a single, large distribution (see Fig. 2). For this, we plot
what fraction of pixels moves faster than x, given a flow
speed x. The higher the resulting curve, the larger the overall
optical flow. To summarize the distribution, we use the area
under this curve (AUC). For the analysis of single sequences,
we also report how the distribution of optical flow over the
image evolves with time (see Fig. 3). This representation
may help users of this dataset to correlate algorithm failures
with the optical flow at the time of failure. To compute
these metrics, the dense optical flow is measured using the
OpenCV implementation of the Farnebäck method [23]. For
this analysis, we exclude all points with an optical flow
below one pixel per frame, as such points would mostly not

contribute to state estimation, as they are generally without
texture. As we can see in Fig. 2, our sequences exhibit the
largest optical flow among similar datasets to date, especially
the outdoor sequences, independently of the normalization
metric used. A few of the more challenging EuRoC datasets
exhibit unnormalized optical flow that is comparable to our
indoor sequences (see Fig. 2a). However, the Snapdragon
camera that we use has a larger field of view at a slightly
lower resolution than the VISensor that was used in EuRoC,
so we can see that our sequences exhibit higher normalized
optical flows (see Fig. 2b and 2c). We do not consider the
sequences from the Blackbird dataset [20] in Fig. 2 since
the trajectories can be made to have arbitrary optical flow
by changing the synthetic scenes that are rendered.

In addition to the optical flow metrics that we propose, we
also collect more traditional properties of available drone-
based visual inertial datasets in Table I, which show that
the UZH-FPV Drone Racing dataset offers longer and faster
trajectories than other datasets aimed at aggressive flight.

III. DATASETS

A. Flying Platform

We now describe the components of the platform that
we used for recording aggressive flying data (see Fig. 4).
Drawing on the experience of several FPV racing enthusiasts,



EuRoC MAV [17] UPenn Fast Flight [24] Zurich Urban MAV [19] Blackbird [20] UZH-FPV Drone Racing
Environments 2 1 3 5a 2
Sequences 11 4 1 186 27
Camera (Hz) 20 40 20 120 30/50d + events
IMU (Hz) 200 200 10 100 500/1000e

Motor Encoders (Hz) n/a n/a n/a ∼190 n/a
Max. Distance (m) 130.9 700 2000 860.8 340.1/923.5f

Top Speed (m/s) 2.3 17.5 3.9b 7.0 12.8/23.4g

mm Ground Truth (Hz) 20/100c n/a n/a 360 20

TABLE I: Comparison of visual-inertial datasets. Notes: a - Visual environments are rendered in photorealistic simulation.
b - Velocity from GPS. c - Rate of precise ground truth from Leica in Machine Hall sequences/Vicon Room sequences.
d - Frame rate of Snapdragon Flight/mDAVIS. e - IMU rate of Snapdragon Flight/mDAVIS. f - Distance indoor/outdoor
sequences. g - Speed for indoor/outdoor sequences, both are larger than existing indoor or outdoor sequences, respectively.
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Fig. 4: The recording platform: 1© mDAVIS 2© Snapdragon
Flight with fisheye stereo cameras 3© Omnidirectional re-
flector that provides the ground truth position. 4© Up Board
used for recording the DAVIS data. 5© FPV camera used by
the human pilot.

we designed a quadrotor platform based on a popular FPV
racing frame (the Lumenier QAV-R carbon fiber frame) with
custom-designed, 3D-printed parts for mounting computers
and sensors. Thrust is provided by Cobra CM-2208/20
2000KV motors with a 4S battery, and Dalprop T6040C
6” 3-blade propellers. The overall mass of the platform is
1110 g, and based on manufacturer specifications for this
motor and propeller combination, the thrust-to-weight-ratio
is approximately 3.5.

In order to measure ground truth position for trajectories
in large indoor spaces (without a Vicon system) or outdoors,
we utilize a laser tracking system in which a ground-based
device continuously measures the 3D position of a reflective
prism mounted to the platform as it moves. The tracking
prism was mounted as far to the rear of the platform as
possible, and stand off from the body of the frame, in order to
minimize self-occlusions when the platform undergoes large
pitch or roll motions. More information about the tracking
system can be found in Sec. III-C. The quadrotor platform
was flown by an expert FPV pilot.

B. Onboard Data

To keep the platform as lightweight as possible to achieve
aggressive flight, we chose to use only lightweight visual-
inertial sensors on our platform. Specifically, we mounted a

miniDAVIS346 (mDAVIS), which provides events, frames,
and IMU, and a Qualcomm Flight board, producing high-
quality camera frames and IMU data.

a) Event Camera: The miniDAVIS346 (mDAVIS) is a
very recent sensor developed by iniVation [25], with a spatial
resolution of 346× 260 pixels (this is the largest resolution
commercially available on the event-camera market). It pro-
vides events with microsecond temporal resolution and can
also record standard grayscale frames at 50 Hz. The events
and the frames from the mDAVIS are spatially aligned and
time-synchronized with the IMU directly on the hardware.
We equipped the mDAVIS with a wide-angle lens (FOV:
120°), and mounted it either forward-facing on the quadrotor
(see Fig. 4) or angled at 45° down. The sensor was isolated
from vibrations with rubber dampers and was connected over
USB to a companion computer (an Up Board [26], which
receives and logs the sensor readings in ROS bag files [27].
This arrangement, with separate computers for the event-
based sensor and standard camera, was done in order to avoid
USB bus saturation and enable real-time logging.

b) Qualcomm Flight Board: The Qualcomm Flight is a
highly integrated single board computer designed for drone
and aerial robotic applications [28]. It provides high-quality,
640×480 grayscale frames from wide-angle cameras, as well
as hardware-synchronized IMU measurements. Normally, the
Qualcomm Flight uses a downward-looking wide-angle VGA
camera for visual state estimation, but we adapted the camera
mountings to orient the same camera modules (Sunny MD-
102-A 186°FOV VGA camera units using an Omnivision
OV7251 global shutter sensor) so that they were forward-
looking or angled at 45° down in a stereo configuration. The
board was mounted below the platform and was isolated from
vibrations in the frame with rubber dampers. The camera
images and IMU measurements were recorded onboard to
ROS bag files.

C. External Data

Ground truth position measurements were provided by
a Leica Nova MS60 TotalStation [29] laser tracker. This
device is designed for very accurate and precise range
and bearing measurements in near-static conditions, such as
building construction and surveying. However, for ease-of-
use, it also features the ability to lock to a reflective target
and provide continuous measurements. When paired with



Fig. 5: Indoor and outdoor environments used for data
collection. The indoor space is a former airplane hangar,
with approximately 30m × 15m × 6m of open space. The
outdoor environment was a large field sloping gently toward
some woods, with several isolated trees.

a MRP122 360° prism, it provides position measurements
with ±1 mm accuracy in a gravity-aligned world reference
frame. The MS60 was mounted to a tripod and leveled,
providing a consistent reference point for measurement
throughout each trajectory. Once locked to the prism, the
MS60 tracker can provide position measurements at up to
20 Hz, and is capable of rotating up to 180° per second
while tracking the prism. However, occlusions, aggressive
motions, or high speeds can cause it to lose tracking or fail
to obtain some samples. In practice, missing measurements
occurred frequently, but typically for only a few samples
at a time. However, in a quest to record the fastest and
most aggressive trajectories possible, we often pushed the
envelope of the MS60’s tracking capabilities, so we typically
flew each trajectory until an unrecoverable loss of tracking
occurred during aggressive maneuvers, although a few of the
sequences conclude with a landing back near the start of the
trajectory. Considering that the MS60 is not designed for
such high-speed applications, it nonetheless provided high-
accuracy position measurements for the quadrotor platform
during many aggressive maneuvers.

D. Data Collection

For each trajectory, the quadrotor platform was initialized
at rest on the ground, and we acquired a tracking lock on the
prism with the MS60. Once we began recording the ground
truth position of the prism, we began logging the sensor data,
and the FPV pilot then took off and flew a predetermined
trajectory. The sequence ended when the tracker lost its lock
on the prism or the quadrotor completed its trajectory and
landed again on the ground.

In addition to the trajectories, calibration sequences were
recorded for both the mDAVIS and Qualcomm Flight, for
both intrinsic and camera-imu extrinsic calibration. High-
resolution RGB video data from the FPV camera used for

Fig. 6: Coordinate frame definition. W : World frame, P :
Center of Leica prism, the MS60 tracks the position of P
relative to W. E: event camera and D: IMU on the mDAVIS
sensor. C: standard camera and S: IMU on the Snapdragon
Flight. For each frame, red, green and blue arrows represent
the unit vectors in x, y and z, respectively.

piloting was also logged, but this data is uncalibrated and
unsynchronized with the inertial sensors or ground truth.

We captured data in two environments: one indoor, in an
airplane hangar, and one outdoor, in a large field (see Fig. 5).
The indoor hall included an approximately 30m × 15m × 6m
open space, that is part of a larger hangar building. In this
space, different race courses were set up, including some
with FPV racing gates, obstacles, or just open space to
allow free-form trajectories. The outdoor environment was
a large open field (approximately 80 m × 50 m) edged by
forest, with a slight slope. Several isolated trees stood in
the field and provided obstacles for trajectories that included
circles, figure eights, slaloms between the trees, and long,
straight, high-speed runs. Details of the individual sequences
that comprise the dataset can be found in the supplementary
material at http://rpg.ifi.uzh.ch/uzh-fpv

E. Ground Truth Alignment

Our collected data features sensor measurements recorded
on two different onboard computers, as well as external
position measurements from the Leica tracker, recorded to
a third computer. In order to produce useful ground truth for
the trajectories, we aligned the sensor data with our external
measurements using a full maximum-likelihood batch opti-
mization, similar to the procedure performed for the EuRoC
MAV dataset [17], which featured a similar tracking setup.

The batch optimization procedure utilized all position
measurements from the tracker and all IMU data from the
onboard sensors. We estimated the following states:

x = [q p v bg ba ]
>

throughout the trajectory for both the Qualcomm Snapdragon
Flight board (sensor frame S) and mDAVIS (sensor frame
D). Here, q is the attitude, p is the position, and v is the
velocity of the IMU frame, for the sensor frame in question.
The gyroscope and accelerometer biases of the frame’s IMU
are represented by bg and ba, respectively, and are modeled
as Wiener processes. We additionally estimated the unknown
translation p from the tracking prism (frame P) to each

http://rpg.ifi.uzh.ch/uzh-fpv
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Fig. 7: Visual-inertial odometry results on one of the slower
indoor sequences, performing several laps around a race track
with gates. Methods shown include Ultimate SLAM [30] (an
event-based VIO), VINS-Mono with and without loop clos-
ing [31], and Qualcomm’s proprietary VI-SLAM algorithm.
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Fig. 8: Visual-inertial odometry results on the Outdoor 16
sequence. This is one of the faster outdoor sequences, flying
several large figure eight laps around the open field. In this
case, all of the algorithms (including Okvis [32] and VINS-
Mono [31]) begin to drift on the second turn, and rapidly
drift away from the ground truth trajectory. Qualcomm’s VI-
SLAM is able to track closer to the true trajectory for a bit
longer, but fails before completing a full lap.

IMU frame (S or D) measured in the respective IMU frame,
as well as the temporal offset (∆t) between each sensor
system’s measurements and the Leica tracking data:

θ = [pSP pDP ∆tS ∆tD ]

where the time offsets are taken to be constant over our short
trajectories.

IV. EXPERIMENTS

We performed a few qualitative experiments to evaluate
the level of difficulty that our sequences pose for current
state estimation algorithms. We selected one easier trajectory
(Indoor45 4) and one more challenging sequence (Outdoor
16), and ran several visual-inertial odometry algorithms on
the Snapdragon Flight and mDAVIS data (camera and IMU).
Indoor45 4 has a low maximum velocity (|~v|max) and low
area under the optical flow curve (AUC) relative to the

other sequences in the dataset, while Outdoor 16 has a
high maximum velocity and high AUC. For each sequence,
we aligned the beginning of each algorithm’s estimated
trajectory and plotted the X-Y positions against the ground
truth in Figures 7 and 8. Our goal in these experiments
was not to perform a comprehensive benchmark evaluation
of the state of the art, but rather to support our claim that
the UZH-FPV Drone Racing dataset is more challenging for
state estimation than existing datasets.

On the easier sequence, Indoor45 4 (see Fig. 7), all of
the methods, including Qualcomm’s proprietary VI-SLAM,
as well as an event-based VIO method [30], exhibit some
slow drift but track the complete trajectory successfully. The
method based on event data [30] does not outperform the
other methods. While we included this baseline for com-
pleteness, we point out that a direct comparison between [30]
(which operates on data from the mDAVIS sensor [33]), and
the other methods such as VI-SLAM is not fair. Indeed, these
methods operate on much better hardware: cameras with a
higher resolution (640×480 pixels versus 346×260 pixels),
higher contrast sensitivity, better signal-to-noise ratio, and
more accurate camera-to-IMU synchronization. Despite this,
[30] can track the entire trajectory with limited drift. We view
these results as promising, and hope to spur further research
in this direction with our dataset. None of the algorithms
performed well on the more challenging sequence, Outdoor
16 (see Fig. 8), all beginning to drift after a few turns at high
speed, and accumulating significant drift and scale errors as
the sequence progressed.

These results indicate that while the current state of the
art in visual-inertial odometry algorithms can accurately
track the full trajectory of slower datasets like EuRoC (see
benchmark comparison in [34]), the UZH-FPV Drone Racing
dataset is more challenging for these algorithms due to the
larger apparent motions in the image stream. Our easier
sequences are within reach of existing algorithms, but still
non-trivial, while the challenging sequences will require
advancement of the state of the art to successfully track.

V. CONCLUSION

We present a novel dataset for high speed, 6DoF state
estimation, in which we leveraged the expertise of the FPV
drone racing community to develop a sensor platform capa-
ble of the fastest and most agile trajectories yet released for
the purpose of benchmarking. We additionally propose new
metrics for assessing the level of difficulty of VIO datasets
using optical flow statistics. Based on the growing interest
in drone racing, our intention is to continue expanding
this dataset with more environments, sequences, and sensor
modalities. We hope that this data will spur the advancement
of the state of the art in high speed state estimation.
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