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Abstract

Building facade detection is an important problem in computer vision, with applications in mobile robotics and semantic scene
understanding. In particular, mobile platform localization and guidance in urban environments can be enabled with accurate models
of the various building facades in a scene. Toward that end, we present a system for detection, segmentation, and parameter
estimation of building facades in stereo imagery. The proposed method incorporates multilevel appearance and disparity features
in a binary discriminative model, and generates a set of candidate planes by sampling and clustering points from the image with
Random Sample Consensus (RANSAC), using local normal estimates derived from Principal Component Analysis (PCA) to inform
the planar models. These two models are incorporated into a two-layer Markov Random Field (MRF): an appearance- and disparity-
based discriminative classifier at the mid-level, and a geometric model to segment the building pixels into facades at the high-
level. By using object-specific stereo features, our discriminative classifier is able to achieve substantially higheraccuracy than
standard boosting or modeling with only appearance-based features. Furthermore, the results of our MRF classificationindicate a
strong improvement in accuracy for the binary building detection problem and the labeled planar surface models providea good
approximation to the ground truth planes.

Keywords: stereo vision, mobile robot perception, hierarchical Markov random field, building facade detection, model-based
stereo vision

1. Introduction

Accurate scene labeling can enable applications that rely on
the semantic information in an image to make high level de-
cisions. Our goal of labeling building facades is motivated
by the problem of mobile robot localization in GPS-denied ar-
eas, which commonly arises in urban environments. Besides
GPS, other cues from the environment such as compass head-
ings and Time-Difference-Of-Arrival (TDOA) of radio signals,
along with vision-based localization [1], can enable semantic
methods of navigation in these areas. However, these meth-
ods suffer from low accuracy and are subject to interference,
or in the case of vision-based localization, struggle with occlu-
sion and clutter in the scene. The vision-based localization ap-
proach being developed by our group depends on the detection
of buildings within the field of view of the cameras on a mobile
platform as a means to reduce the effects of clutter on local-
ization, and to enable navigation based on static, semantically
meaningful landmarks detected in the scene. Within this prob-
lem, accurate detection and labeling of the facades is important
for the high level localization and guidance tasks. We restrict
our approach to identifying only planar building facades, and
we require image input from a stereo source that produces a

1Present address:University of Hawai‘i at Manoa, Department of Me-
chanical Engineering, 2540 Dole St.-Holmes Hall 310, Honolulu, HI 96822,
jad4@hawaii.edu

disparity map. Since most buildings have planar facades, and
many mobile robotic platforms are equipped with stereo cam-
eras, neither of these assumptions is particularly restrictive.

In this paper, we propose a method for fully automatic build-
ing facade imaging–detection, segmentation, and parameter
estimation–for mobile stereo vision platforms. For an input
stereo image and disparity map, we desire a pixelwise segmen-
tation of the major building facades in the scene, as well geo-
metric models for each of these planar facades. Our approach
proceeds in three main steps: discriminative modeling with
both appearance and disparity features, candidate plane detec-
tion through PCA and RANSAC, and energy minimization of
MRF potentials. A diagram of the workflow for candidate plane
detection and high-level labeling is provided in Fig. 1. We
make no assumptions on the quality of the input data, and in
fact many of our methods were driven by the need to deal with
the missing or inaccurate data that is common to single-view
stereo imagery. Consequently, we adopt a top-down approach
to fitting planes globally in the image, rather than a bottom-up
approach that would suffer from missing disparity data on the
local scale. This is also directed toward our goal of segmenting
the major facades in the scene, and not every planar surface.
In our experiments, we use off-the-shelf single-view stereo data
produced by a system-on-a-chip camera that computes dispar-
ity in real time, and we acknowledge that the maps may suffer
from both missing data and range-uncertainty.

Our work leverages stereo information from the beginning.
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Figure 1: Workflow of the proposed method. The proposed BMA+D classifier computes a probability map for binary classification of pixels into buildings
and non-buildings (Step 1, Sec. 3). We then generate a set of candidate planes with parameter estimates using a RANSAC model that incorporates local PCA
normal approximations (Steps 2-4, Sec. 4.2). Finally, we solve a two-layer MRF to compute labelings for the binary classification at the mid-level and for facade
segmentation at the high-level (Step 5, Sec. 4.3).

Our discriminative model is generated from an extension of the
Boosting on Multilevel Aggregates (BMA) method [2] that in-
cludes stereo features [3]. Boosting on Multilevel Aggregates
uses hierarchical aggregate regions coarsened from the image
based on pixel affinities, as well as a variety of high-level fea-
tures that can be computed from them, to learn a model within
an AdaBoost [4] two- or multi-class discriminative modeling
framework. Since many mobile robot platforms are equipped
with stereo cameras, and can thus compute a disparity map for
their field of view, our approach of using statistical features of
the disparity map is a natural extension of the BMA approach
given our intended platform. Since buildings tend to have pla-
nar surfaces on their exteriors, we use the stereo features to ex-
ploit the property that planes can be represented as linear func-
tions in disparity space and thus have constant spatial gradients
[5]. We will refer to this extension of BMA to disparity features
as BMA+D. We use the discriminative classification probabil-
ity as a prior when performing inference for the facade labels.

In order to associate each building pixel with a particular fa-
cade, we must have a set of candidate planes from which to in-
fer the best fit. We generate these planes by sampling the image
and performing Principal Component Analysis (PCA) on each
local neighborhood to approximate the local surface normalat
the sampled points. We then fit models to those points by itera-
tively using Random Sample Consensus (RANSAC) [6] to find
subsets that fit the same plane and have similar local normal

orientations. From these sets of points, we are able to estimate
the parameters of the primary planes in the image.

We then incorporate both of these sources of information
into a Bayesian inference framework using a two-layer Markov
Random Field (MRF). We represent the mid-level MRF as an
Ising model, a layer of binary hidden variables representing the
answer to the question “Is this pixel part of a building facade?”
This layer uses the discriminative classification probability as a
prior, and effectively smooths the discriminative classification
into coherent regions. The high-level representation is a Potts
model, where each hidden variable represents the labeling of
the associated pixel with one of the candidate planes, or with
no plane if it is not part of a building. For each pixel, we con-
sider its image coordinates and disparity value, and evaluate the
fitness of each candidate plane to that pixel, and incorporate it
into the energy of labeling that pixel as a part of that plane.A
more in-depth discussion of our modeling and labeling methods
can be found in Section 4.

The primary contributions of this paper are a novel approach
to discriminative modeling for building facade detection that
leverages stereo data, a top-down plane fitting procedure onthe
disparity map, and a novel Markov Random Field for fusing the
appearance model from the discriminative classification and the
geometric model from the plane fitting step to produce a facade
segmentation of a single-view stereo image. Our method for
facade segmentation using the two-layer MRF and RANSAC
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was originally proposed in [7], but this paper includes a full
quantitative study on the performance of these methods on a
larger dataset, and this is the first inclusion of any of this work
in an archival publication.

1.1. Related Work
Other research in the area of modeling with stereo cues in-

cludes the work of Konolige et al. [8], which integrates appear-
ance and disparity information for object avoidance, and uses
AdaBoost to learn color and geometry models for ideal routes
of travel along the ground. They use stereo information for de-
tection of the ground plane and for distinguishing obstacles, but
not for classifying and labeling those objects. Li et al. [9]use
disparity data in a template-based AdaBoost framework. Their
work is applied to human pose estimation, and their featuresare
strictly pixel-based. Perhaps the most similar approach toour
discriminative modeling method is from Walk et al. [10], which
incorporates object-specific stereo features into a combination
of classifiers for pedestrian detection. Although these dispar-
ity features are very different from the ones that we use, the
use of object-specific properties to drive those features iscon-
sistent with our approach. However, their ultimate goal is for
detection of pedestrian bounding boxes, and not for pixel la-
beling of those detected pedestrians. An important distinction
between the two problems is also that buildings can occupy a
much larger percentage of the pixels in the frame, and come in
a much greater range of shapes and sizes than humans.

Luo and Maı̂tre [11] proposed using the same algebraic con-
straint on planar surfaces, but for the purpose of correcting dis-
parity. Their approach relies on the assumption that withinur-
ban scenes, all surfaces will be planes, so their geometric prop-
erties can be used to enhance poor disparity calculations. In-
stead, we are using a linear gradient constraint in our disparity
features to identify those regions which do, in fact, fit thatpla-
nar assumption.

Building facade detection and segmentation have been and
continue to be well-studied problems. Many recent papers in
the literature have focused on segmentation of building facades
for use in 3D model reconstruction, especially in the context
of architectural modeling or geo-spatial mapping applications
such as Google Earth. Korah and Rasmussen use texture to seg-
ment building facades, among other facade-related tasks [12].
Frohlich et al. [13] perform facade labeling with a Random-
ized Decision Forest, but do not attempt to segment individ-
ual facades. Wendel at al. [14] use intensity profiles to find
repetitive structures in coherent regions of the image in order
to segment and separate different facades. Hernández and Mar-
cotegui employ horizontal and vertical color gradients, again
leveraging repetitive structures, to segment individual facades
from blocks of contiguous buildings in an urban environment.
Hoeim et al. [15] use a single camera image to infer coarse
planar orientations for regions of the image in order to cre-
ate popped-up 3D views of the scene, but their approach does
not consider segmentation or modeling of buildings or theirfa-
cades. Recky et al. [16] use semantic segmentation of the
scene with a discriminative random field, then find repetitive
patterns and leverage some contextual constraints (e.g. facade

boundaries will be vertical) to compute facade-wise segmen-
tation. However, their impressive results (96.6% F-score) re-
quire multi-view. With single-view, their approach produces
comparable results to ours (81.7% pixel-wise F-score vs. our
77.7%). Although they are interested in facade segmentation
of the images, they do not pursue any disparity or depth infor-
mation from their multi-view scenario, and thus do not attempt
any modeling of the facades that they segment. The multiview
approach in [17] automatically creates textured 3D models of
urban scenes from sequences of images. They perform seman-
tic segmentation on the images and partition the resulting 3D
facades along vertical lines between buildings. They produce a
very realistic looking 3D model for each building by leveraging
the regularity of buildings in urban areas. However, there are
no quantitative results with which to compare our performance.

Despite the additional information that multi-view stereo
provides, we pursue a single-view approach due to our prob-
lem constraints. For image-based localization from facadees-
timates, we anticipate the need to capture many single stereo
frames in a panorama. Facade orientations within the narrow
field of view of a single stereo image likely will not constrain
the location or pose of the camera with respect to the build-
ings in an urban environment. However, by foveating to ob-
serve other buildings in a panorama, a set of facade estimates
from multiple single-view stereo images can be pieced together
to give a more constraining set of facades from a wider field
of view. Additionally, many semantic scene segmentation ap-
proaches exist using single-view camera imagery. By utiliz-
ing depth from stereo, those single-view approaches can be ex-
tended to extract geometric information about the labeled fa-
cades in the form of planar models.

The homography approach as in [18] could be applied to this
problem in order to bypass the disparity map altogether to ob-
tain planar correspondences between images. However, we are
pursuing a purely automatic approach that does not use prior
knowledge or human intervention, and their real quadratic em-
bedding approach requires the number of planes to be known a
priori, and their feature points are hand-selected.

The approach in [19] uses appearance, stereo, and 3D ge-
ometric features from a moving camera with structure from
motion. They leverage a Manhattan-world assumption in in-
door scenes to achieve a three-class segmentation of the scene
with ∼ 75% labeling accuracy. Although their features and ap-
proach are very different from ours, and their problem more
constrained, their use of stereo and 3D features in additionto
visual features is in line with our proposed method.

Posner et al. [20] classify laser scan points that have been
projected into the camera frame into 10 urban classes (e.g.
brick, vehicle, grass). They take a bottom-up approach for
plane fitting to their point cloud data: the space of the scan
is discretized into cubes, and local plane models are fit to the
points within them, and these local planes are merged into pla-
nar patches based on orientation. The plane orientation relative
to the ground becomes a feature, along with numerous color and
texture features, for a multiclass SVM classifier. They achieve
high accuracy (83− 91% for different types of walls) in classi-
fying the pixels corresponding to points from their laser scans,
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but they do not do produce a full segmentation of the image, or
isolate individual facades.

Several other methods utilize vanishing points for planar sur-
face detection. David identifies vanishing points in a monocu-
lar image by grouping line segments with RANSAC and then
determines plane support points by the intersection of the seg-
ments that point toward orthogonal vanishing points, ultimately
clustering them to extract the planes of the facade [21]. Bauer et
al. [22] implement a system for building facade detection using
vanishing point analysis in conjunction with 3D point clouds
obtained by corresponding a sweep of images with known ori-
entations. Lee et al. [23] use a line clustering-based approach,
which incorporates aerial imagery, vanishing points, and other
projective geometry cues to extract building facade textures
from ground-level images, again toward 3D architectural mod-
els reconstruction.

Our work draws on the contributions of Wang et al. [24],
whose facade detection method using PCA and RANSAC with
LiDAR data inspired our approach with stereo images. Perhaps
the approach most similar in spirit to ours is that of Gallup et
al. [25], who also use an iterative method for generating candi-
date plane models using RANSAC, and also solve the labeling
problem using graph cuts [26]. However, their approach relies
on multiview stereo data and leverages photoconsistency con-
straints in their MRF model, whereas we perform segmentation
with only single stereo images. In addition, on a fundamental
level their method involves finding many planes that fit locally,
and stitching them together in a bottom-up manner, whereas we
aim to extract our planar models from the global data set, with-
out an explicit restriction on locality. We present quantitative
results on the accuracy of our planar modeling as well.

Although many of these results are directed toward 3D model
reconstruction, some other work has been focused toward
our intended application of vision-based navigation, namely
[21, 27, 28, 29]. Additionally, our work is focused on retrieval
of the estimated plane parameters, as implemented in the planar
surface model of [5], and not on 3D model reconstruction.

Our approach proceeds in five steps: 1) computing a proba-
bility map with a discriminative classifier (Sec. 3), 2) sampling
the disparity map (Sec. 4.2.1), 3) computing local normal es-
timates at the sampled points using PCA (Sec. 4.2.1), 4) itera-
tively generating a set of candidate planes with RANSAC (Sec.
4.2.2), and 5) using a hierarchical Markov random field to com-
pute facade segmentations (Sec. 4.3). Please see Fig. 1 for a
visual representation of this workflow.

2. Boosting on Multilevel Aggregates

Our discriminative modeling approach is based on the Boost-
ing on Multilevel Aggregates (BMA) method proposed in [2].
We use the version of BMA that is extended to include disparity
features (BMA+D, see Sec. 3) for producing pixelwise proba-
bilities for the building class. Although the full methodology is
not reproduced here, the core components upon which our con-
tributions are based are described below. The central idea of
BMA is that the feature types that are traditionally used within

a boosting framework (point and patch-based features), arelim-
ited in their discriminative power. Since these features donot
leverage any context from the underlying image, their statistics
are often polluted when the patches capture regions that contain
pixels from multiple classes. In order to provide features that
avoid this problem, and that also offer a richer set of statistics
to measure from the image, BMA uses adaptive coarsening to
build a hierarchy of aggregate regions from the image, essen-
tially a hierarchy of linked superpixels. It links each pixel with
the aggregates above it in the hierarchy, and computes features
on the aggregates as well as the traditional patch and point-
based features on the image. These aggregate features are rich
in information that is not captured in the image-level features,
they are computed at multiple scales, and they adapt to the un-
derlying structure of the image to follow object boundaries. All
of the new aggregate features, as well as patch-based Haar fea-
tures and x and y coordinate point features, are used to trainan
AdaBoost model for discriminative classification.

2.1. Adaptive Multilevel Coarsening

From a graph defined on the image pixels, we compute a hi-
erarchy of progressively coarser graph layers containing aggre-
gate nodes grouped from the nodes of the finer layer. At each it-
eration of coarsening, each node in the current layer, represent-
ing a pixel or aggregate, is grouped with its connected neigh-
bors into an aggregate based on the affinities of their statistics
(e.g. intensity). Each aggregate inherits both connectivity and
statistics from its children, the latter being the weightedmean
of its children’s properties, and all of its features are computed
during coarsening. A reduction factor,τ, limits the number of
children per aggregate, and therefore determines the height of
the hierarchy. Coarsening is stable: the grouping procedure is
based on a deterministic decision boundary for aggregate statis-
tical affinity. In the worst case, the complexity of the coarsening
procedure is log-linear (O(n log1

τ
n)) in the number of pixels,n,

but linear (O(n)) in the average case. This coarsening procedure
and the aggregate features summarized below are described in
full detail in [2].

2.2. Aggregate Features

The features below are defined on the aggregates at each level
of the hierarchy for an aggregateu using the following notation:

L(u) set of pixels it represents
N(u) set of neighbors on same level
C(u) set of child nodes

minx(u),miny(u) minimum spatial location
maxx(u),maxy(u) maximum spatial location

x(u), y(u) spatial location
g(u), a(u), b(u) intensity and color (Lab space)

Photometric and Spatial Statistical Features
• Average Statistics:weighted mean forx(u) (similarly for

y, g, a, andb)

m(u) =
∑

c∈C(u)

m(c) (1)
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x(u) =
1

m(u)

∑

c∈C(u)

m(c)x(c) (2)

• Aggregate Moments: central moment about the aggre-
gate’s mean statistic, computed over its set of pixels, for
x(u) (and similarly fory, g, a, andb)

Mk
x(u) =

1
m(u)

∑

i∈L(u)

(x(i) − x(u))k (3)

• Adaptive Histograms: for intensity, colors, and Gabor
responses are computed overL(u). Histogram bin weights
are each considered features. For example, binb of the
intensity histogramHg:

Hg(u, b) =
1

m(u)

∑

i∈L(u)

δ(g(i) − b) (4)

Shape Features

• Elongation: ratio of height to width of an aggregate’s
bounding box

e(u) =
h(u)
w(u)

=
maxy(u) −miny(u)

maxx(u) −minx(u)
(5)

• Rectangularity: measures the degree to which an aggre-
gate fills its bounding box

r(u) = w(u)h(u) −m(u) (6)

• PCA: compute the 2D spatial covariance matrix and its
two eigenvalues:λ1(u) andλ2(u). PCA features areλ1(u),
λ2(u), the ratioλ2(u)

λ1(u) , and the off-diagonal covariance.

Adaptive Region and Contextual Features

• Adaptive Relative Haar-like Features:patch-based Haar
features but with spatial coordinates defined relative to an
aggregate’s bounding box.

• Contextual Features:measure the similarity of an aggre-
gate to its neighbors at a region level. Consider a distance
measureD(u, v) between neighboring aggregatesu andv
on a statistic (intensity for example). Define a min-context
feature (and max and mean features similarly) as:

f (u) = min
v∈N(u)

D(u, v) (7)

Hierarchical Features

• Mass: m(u) of an aggregate measures the homogeneity of
a region.

• Number of Neighbors: | N(u) | captures the local com-
plexity of a region.

3. BMA+D Classifier

We implement the Boosting on Multilevel Aggregates algo-
rithm described above, but with extensions for working with
disparity maps and their associated features. This extension
was initially proposed in [3] and expanded in [7]. In our fa-
cade segmentation algorithm, the BMA+D classifier produces
a probability that each pixel in an input image is from the build-
ing class. The BMA method builds a hierarchy of aggregate
regions on the input image and then uses novel features com-
puted on these aggregate superpixel regions, in addition topixel
and patch based features, to perform discriminative classifica-
tion within an AdaBoost framework. Our additions to BMA
include accommodations for working with invalid data in the
disparity map: areas of the scene outside the useful range of
the stereo camera, and dropouts where the disparity can not
be computed within the camera’s range due to occlusion, lack
of texture, or insufficient similarity between the images for a
match at that point. Additionally, we introduce several novel
disparity-based features into the boosting framework. TheAd-
aBoost algorithm automatically selects the most discriminating
features in an adaptive way, and produces the best subset of the
full feature set, given the training data.

Although in principle any classifier could be used for this
step, so long as it could produce a probability map for binary
classification in identifying building pixels, we developed the
BMA+Disparity Classifier as a way to incorporate problem-
specific knowledge into the boosting framework. Our results
in this domain are superior to approaches that do not leverage
disparity information in their classification.

3.1. Dense Disparity
Computing the dense disparity map of a scene, given a stereo

pair, is a non-trivial problem [30]. Although there have been re-
cent advancements in sensors such as the Microsoft Kinect that
produce very dense depth or disparity maps, and therefore en-
able high-level tasks that depend on the quality of that data(for
example, [31]), these sensors are unsuitable for outdoor use.
Many commercial stereo cameras are equipped with embedded
processing for real-time disparity map computation. Although
these products often have good resolution and do a decent job
of computing the disparity map, there are limitations inherent in
both the hardware and software. Stereo cameras generally have
fixed focal length sensors, so the range in which the cameras
can focus is limited, resulting in a finite region in which dis-
parity can accurately be computed. Additionally, the on-board
processors of stereo cameras can not execute the more accurate,
but computationally intensive, disparity map algorithms such as
TRW-S [32]. Even off-line computation of the disparity map is
imperfect, because occluded regions from one image will not
have a match in the other image, and thus will not have a dis-
parity value. Figure 2 illustrates a typical example of a disparity
map with invalid regions (shown in black). We discuss our ac-
commodations for these obstacles in sections 3.2 and 3.4.

3.2. Coarsening on Disparity
We perform coarsening on the disparity map in the same

manner as the image intensity coarsening procedure proposed
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Figure 2: A typical image with its disparity map. Invalid regions of the disparity
map are in black.

in [2]. Invalid disparities are first mapped to zero, and we then
build a hierarchy of disparity aggregates of equal height tothe
one for the image. We use the same definition of pixel affinity
as [2] does for intensity: exp[−|su − sv|] for pixels/aggregatesu
andv, and their associated statisticss, which in this case is dis-
parity. An example of intensity and disparity hierarchies pro-
duced by this procedure is illustrated in Figure 3. Althoughthe
coarsening proceeds similarly for both intensity and disparity,
and the aggregates for both still tend to adhere to object bound-
aries, the resulting hierarchies have somewhat different charac-
ter. The separate disparity hierarchy allows the aggregatefea-
tures to capture the statistics of regions with similar disparity
values, which may not align with regions of similar intensity.

3.3. Disparity Features

The BMA framework for intensity and color images adds
a variety of aggregate features to the pixel- and patch-based
statistics of standard boosting [2], all of which are summa-
rized in Sec. 2 . We implement all of these pixel-, patch-, and
aggregate-based features for disparity, and in addition include
several disparity-specific features intended to help discriminate
between building and non-building pixels. By measuring the
uniformity of the disparity gradient across an aggregate, we can
separate the building and background classes by the property
that planar facades will have constant gradient [5] in disparity
space. We compute thex gradient images of the disparity map
by filtering with the directional derivative of a 1-D Gaussian
distribution in thex-direction (similarly fory):

∂

∂x
Gσx(x) = − 1

√
2πσ3

x

xexp

(

−x2

2σ2
x

)

(8)

that is discretized into a kernel of fixed width. From these gra-
dient images, we compute the average and range of the gradient
in each direction, as well as the vector gradient magnitude and
angle. We have also included the Laplacian as a feature, be-
cause the Laplacian of a planar surface in a disparity map is
zero. For this we convolve the image with the 3× 3 Laplacian
kernel.

3.4. Training and Classification

When we wish to classify an image, some regions will not
have corresponding disparities; we compensate by basing our
classification scheme on two models. We use a model that in-
cludes both image and disparity features for classifying pixels

(a) Same label in image
hierarchy.

(b) Same label in disparity
hierarchy.

(c) Same label in both hi-
erarchies, and valid dis-
parity.

Figure 4: Suitable pixels for training the BMA+D model (in white).

which do have valid disparity values, and a second model with
only image features for classifying the pixels in invalid dispar-
ity regions. We train both models on pixels and their corre-
sponding aggregates from a single set of training images; in
both cases, we only use a pixel if it has a consistent class la-
bel in all of the associated aggregates above it in the hierarchy.
This avoids training on pixels whose aggregate statistics may
be polluted at some higher level. For the BMA+D model, we
further constrain the set of suitable training pixels by applying
the same criteria to the labels up the disparity hierarchy, and by
restricting the set to those pixels that have valid disparity val-
ues, as in Figure 4. Since we are using the image-only model
to classify those pixels that do not have valid disparity, wetrain
the image model on those pixels that have consistent labels in
both hierarchies and invalid disparity in the training data. So
during classification, given an input image and disparity map,
pixels from valid regions of the disparity map are classifiedus-
ing the model incorporating both image and disparity features,
and pixels in invalid regions are classified using the model with
only image features. As we are performing the coarsening pro-
cedure from standard BMA twice (once for the image and once
for the disparity map), the complexity of this step is also log-
linear (O(n log1

τ
n)) in the number of pixelsn, in the worst case,

and linear (O(n)) in the average case.

4. MRF Model and Facade Parameter Estimation

We have developed a Markov random field model to per-
form segmentation and facade model labeling. For each pixel
in an image, we compute its label for both the binary build-
ing/background labeling problem, as well as the best fit plane
label among a set of facade models generated from the data.
This overall approach was proposed initially in [7] but has been
expanded and more thoroughly evaluated here.

4.1. Plane Parameters
We now derive the planar model that we use for modeling

facades in disparity space. Throughout this discussion, weas-
sume that we have stereo images in which the extrinsic calibra-
tion parameters are unknown but constant. Since we do not aim
for full 3D reconstruction, we assume that the intrinsic calibra-
tion parameters are known to the camera or disparity source,
but they are not required for modeling planes in disparity space
given a disparity map. Thus, we can determine the surface nor-
mal parameters up to a constant that describes the camera pa-
rameters; and since that constant will be the same across all
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(a) Intensity hierarchy and original image

(b) Disparity hierarchy and disparity map

Figure 3: Intensity and disparity hierarchies. The first four images in each row show the hierarchy levels from the loweston the left (aggregates coarsened directly
from source) to the highest on the right. The final image in each row is the source image in order to facilitate the comparison of object boundaries with top-level
aggregate regions. At each level, the aggregate regions arecolored with random gray values.

candidate planes, we can use the computed surface normals to
differentiate between planes.

A plane in 3D space can be represented by the equation:

ax+ by+ cz= d (9)

and for non-zero depth,z, this can be rewritten as:

a
x
z
+ b

y
z
+ c =

d
z

(10)

We can map this expression to image coordinates by the identi-
tiesu = f · x

z andv = f · y
z, where f is the focal length of the

camera. We can also incorporate the relationship of the stereo
disparity value at camera coordinate (u, v) to the depth,z, using
the identityD(u, v) = f B

z , whereD is the disparity andB is the
baseline of the stereo camera. Our plane equation becomes:

a
u
f
+ b

v
f
+ c =

d · D(u, v)
f B

(11)

which reduces to:
(aB

d

)

u+

(

bB
d

)

v+

(

c f B
d

)

= D(u, v) (12)

Althoughn = (a, b, c)T is the surface normal in world coordi-
nates, for our purposes we can seek to determine the following
uncalibrated plane parametersn′ = (a′, b′, c′), where:

a′ =
aB
d
, b′ =

bB
d
, c′ =

c f B
d

(13)

such that

n′ ·





















u
v
1





















= a′u+ b′v+ c′ = D(u, v) (14)

This new set of plane parameters relates the image coordinates
and their corresponding disparity values by incorporatingthe
constant but unknown camera parameters.

4.2. Candidate Plane Detection

Our MRF computes the optimal label for each building pixel
from a set of candidate planar models. We now describe the
top-down approach that we use to generate the dominant planar
models in an image.

We perform the second phase of our method by iteratively
using RANSAC to extract a set of points that both fit a pla-
nar model in disparity space and have a local normal estimate
that is consistent with the model. The extracted plane models
become the set of candidate planes for our high-level MRF la-
beling. Each pixel in the image will be labeled by the MRF as
belonging to one of these candidate planes or else assigned a
null label.

4.2.1. Local Normal Estimation
Based on our assumption of planar building facades, we can

use Principal Component Analysis to determine a local normal
to a point in disparity space as in [33]. Since we are working
with regionally dense disparity data, we sample from the avail-
able points that have valid disparity. For each sampled point,
we first construct the covariance matrix for points in its neigh-
borhood of the disparity map. To do this, we consider all points
pi = (ui, vi ,−D(ui, vi)) with valid disparity in a 5× 5 window
centered on this point. Note that stereo cameras that compute
the disparity map with onboard processing in real-time often do
not produce dense disparity maps, so the neighborhood may be
sparse. Other neighborhood sizes could be used, but we found
that a 5× 5 window provided good estimates while remaining
local. We compute the centroid, ¯p = 1

N

∑N
i=1 pi , of the points

{pi}i=1...N in the neighborhood, and calculate the 3× 3 covari-
ance matrix with:

W =
1
N

N
∑

i=1

(pi − p̄) ⊗ (pi − p̄) (15)

where⊗ is the outer product. We then compute the eigenval-
ues ofW, and the eigenvectors corresponding to the largest two
eigenvalues indicate the directions of the primary axes of alocal
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planar estimate to that neighborhood of points. The eigenvec-
tor corresponding to the smallest eigenvalue thus indicates the
direction of the local surface normal,n(u,v).

4.2.2. RANSAC Plane Fitting
Once we have normal estimates, we take a greedy approach

to fitting planar models to the points in disparity space, produc-
ing a set of models for the major planes in the image. We take
a sample,S, of image points with valid disparity, and compute
the local planar surface normal estimates by the aforementioned
method. We then seek to fit a model to some subset ofS of the
form:

αv+ βu+ ǫ(−D(u, v)) + θ = 0 (16)

whereñ = 1
ǫ
(α, β, θ) is the surface normal from Eq. (14). Since

RANSAC finds the largest inlier set,Pin, that it can amongS,
we will fit the most well-supported plane first [6]. We then re-
move the inliers, leavingS′ = S\Pin, and repeat this process it-
eratively, finding progressively less well-supported planes, until
a fixed percentage of the originalS has been clustered into one
of the extracted planes. In our experiments, we used a sampleof
2000 points from the image, and concluded the plane extraction
once 80% of the points had been clustered, or when RANSAC
failed to find a consensus set among the remaining points. We
assume Gaussian noise on the inlier set for our RANSAC plane
model, and throughout we use a standard deviation ofση = 5.

Although we use RANSAC to fit a standard plane model, we
use a modified error term in order to incorporate the information
in the local normal estimates. Here, since our local normal esti-
mate required the use of a three dimensional coordinate system
(u, v,−D(u, v)), and produces a normal of that form, we must
use a slightly different normal formulation ofnm = (α, β, ǫ).
The standard measure of error for a plane model is the distance
of a point from the plane:Em =| αv + βu + ǫ(−D(u, v)) + θ |,
assumingnm = (α, β, ǫ) is a unit vector. We compute another
measure of error,Enorm, the dot product of the model plane nor-
mal nm and the local normal estimaten(u,v), which is the cosine
of the dihedral angle between the two planes defined by those
normals. If we take its magnitude, this metric varies from 0 to
1, with 1 representing normals that are perfectly aligned, and
0 representing a dihedral angle of 90◦. Since the range ofE
depends on the properties of the image (resolution, disparity
range), we combine these two metrics as follows:

E = (2− Enorm)Em = (2− | 〈nm, n(u,v)〉 |)Em (17)

such that the dihedral angle scales the error term fromEm to
2Em, depending on the consistency of the model and local nor-
mals.

4.3. MRF Model

We model our labeling problem in an energy minimization
framework as a pair of coupled Markov Random Fields. Our
mid-level representation seeks to infer the correct configuration
of labels for the question “Is this pixel part of a building fa-
cade?” Based on this labeling, the high-level representation
seeks to associate those pixels that have been positively as-
signed as building facade pixels to one of the candidate planes

Y : Multiclass label - facade

D : Disparity image

X : Binary label - planar surface

p : Classification probability

Figure 5: Our two-layer MRF model.

identified by the previous RANSAC procedure. Figure 5 shows
a graphical representation of this MRF model. Our motiva-
tion for this design stems from the fact that these are related
but distinct questions, and they are informed by different ap-
proaches to modeling buildings. The mid-level MRF represents
an appearance-based model, while the high-level MRF repre-
sents a generative model for the planar facades.

4.3.1. Mid-level Representation

We want our energy function for the mid-level model to cap-
ture the confidence (probability) of our discriminative classifi-
cation, and we want there to be a penalty whenever a pixel with
a high confidence is mislabeled, but a smaller penalty for pixels
with lower confidence in their a priori classification. We usean
Ising model to represent our mid-level MRF, where our labels
xs, for s ∈ λ our image lattice, come from the set{−1, 1}. We de-
fine a new variablebs to represent a mapping of theXs ∈ {−1, 1}
label to the set{0, 1} by the transformationbs =

Xs+1
2 . For a par-

ticular configuration of labelsl, we define our mid-level energy
function as:

E(l) =
∑

s∈λ

[

(1− bs)p(s) + bs(1− p(s))
]

− γm

∑

s∼t

xsxt (18)

wherep(s) is the discriminative classification probability ats
andγm is a constant weighting the unary and binary terms. The
bs quantity in the unary term essentially switches between a
penalty ofp(s) if the label ats is set to−1, and a penalty of
1− p(s) if the label ats is set to 1. Thus forp(s) = 1, labeling
xs = −1 will incur an energy penalty of 1, but labelingxs = 1
will incur no penalty. Similarly forp(s) = 0, labelingxs = −1
will incur no penalty, but labeling it 1 will incur a penalty of 1.
A probability of 0.5 will incur an equal penalty with either la-
beling. Our smoothness term is from the standard Ising model.
In our experiments, we used aγm value of 10.
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4.3.2. High-level Representation
In designing our energy function for the high-level MRF, we

want to penalize points which are labeled as being on a plane,
but which do not fit the corresponding plane equation well. Our
set of facade labelsys, for s ∈ λ, is {0, . . . ,m}, with m equal to
the number of candidate planes identified in the plane detection
step. It corresponds to the set of candidate planes indexed from
1 to m, as well as the label 0, which corresponds to “not on a
plane”. We define a set of equationsEp(s) for p ∈ {0, . . . ,m}
such that

Ep(s) =| a′pu+ b′pv+ c′p − D(s) | (19)

where the surface normaln′p = (a′p, b
′
p, c
′
p) corresponds to the

plane with labelp, and D(s) is the disparity value ats. We
normalize this energy function by dividing by the maximum
disparity value, in order to scale the maximum energy penalty
down to be on the order of 1. For consistency in our notation,
we defineE0(s) to be the energy penalty for a label of 0 ats,
corresponding to the “not on a plane” classification. We set
E0(s) = bs, such that a labeling of−1 in the mid-level represen-
tation results inbs = 0, so there is no penalty for labelings as
“not on a plane”. Similarly, whenxs = 1, bs = 1, so there is a
penalty of 1 to label any of the non-planar pixels as a plane.

To construct our overall energy function for the high-level
MRF, we incorporate the exponential of the set of planar en-
ergy functionsEp with a delta function, so the energy cost is
only for the plane corresponding to the labelys. Since we can-
not computeEp without a valid disparity value, we use an indi-
cator variableχD ∈ {0, 1} to switch to a constant energy penalty
for all planes and the no-plane option, in order to rely strictly
on the smoothness term for that pixel’s label. For the smooth-
ness term, we use a Potts model, weighted like the mid-level
representation with a constantγh. In our experiments, though,
this value ofγh was 1. Thus the high-level energy function we
are seeking to minimize is:

E(l) =
∑

s∈λ

m
∑

p=0

δys=p · exp (χDEp(s)) + γh

∑

s∼t

δys=yt (20)

4.4. Energy Minimization

To perform the energy minimization, we use the graph cuts
expansion algorithm, specifically the implementation presented
in [26]. We perform the minimization in two stages. We first
minimize the energy of the mid-level MRF to obtain an approx-
imation to the optimal labeling of planar surface pixels. This
step uses prior knowledge from the discriminative classifica-
tion. Next, we use the mid-level labeling as well as the detected
candidate planes as a prior for the high-level MRF, and we use
graph cuts again to compute an approximation to that optimal
labeling.

5. Experimental Results

We have performed quantitative experiments using our
method on a new dataset that consists of 141 grayscale images

from the left camera of a stereo imager2 each with a correspond-
ing 16-bit disparity map that was computed onboard the camera
in real time. All images have 500× 312 resolution and human-
annotated ground truth for both binary classification and facade
segmentation. The data was collected on a university campus
with range of architectural styles, as well as a business dis-
trict, and is intended to capture a broad range of common ur-
ban settings. There are a total of 251 facades represented inthe
dataset, and for each one, we have computed a gold-standard
plane model from its ground truth facade segmentation. There
are six images that do not contain any facades, and among the
remaining images of the dataset, many feature occlusions and
other objects (cars, trees, people, etc.) common to urban set-
tings, so there is an adequate representation of negative sam-
ples.

Existing datasets that contained facade images were not ade-
quate for validating our approach, primarily because they con-
tain only optical images and not disparity maps. Even the
datasets that are intended for facade segmentation (for exam-
ple eTRIMS [34]) do not contain individually segmented fa-
cades. We are not aware of another publicly available, human-
annotated, quantitative stereo building facade dataset, and we
believe this new set, which is the first of its kind, can becomea
benchmark for the community3.

In all experiments, any parameters of our method’s compo-
nent algorithms were set consistent with the values previously
mentioned in the text.

5.1. Discriminative Modeling

We performed 6-fold cross-validation with our method
(BMA+D), appearance-only BMA, and standard AdaBoost
with pixel features (x & y location) and patch-based Haar fea-
tures. See Table 1 for a pixel-wise quantitative comparisonof
these models. With the BMA+D classifier, we obtain a 2% in-
crease in accuracy over appearance-only BMA model, and a 6%
increase over the standard AdaBoost classifier. We computed
thed′ statistic for the image-wise performance of all three clas-
sifiers and performed a one-tailed student’s t-test on this statis-
tic for all pairs of classifiers. Both BMA and BMA+D exhibited
statistically significant performance withp-values below 0.1%
when compared to AdaBoost. The comparison of BMA+D to
appearance-only BMA resulted in ap-value of 8.5%, which,
when coupled with the summary statistics in Table 1, indicates
at least modest statistical significance to the improvementin
classification accuracy. Taken over the entire dataset, these re-
sults imply that in this problem domain, disparity featuresare a
beneficial addition to an appearance-only model.

Figure 6 shows ROC curves for these classifiers. Addition-
ally, one image from each validation set was randomly selected
for visual comparison of the three methods. Figure 7 shows
the probability map of the classifier’s output for each of the
methods, along with the two-class labeling with a thresholdof

2Tyzx DeepSea V2 camera with 14 cm baseline and 62◦ horizontal field of
view.

3Our dataset is publicly available at:
http://www.cse.buffalo.edu/~jcorso/r/gbs
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Table 1: Quantitative scores for the AdaBoost, BMA, and BMA+D classifiers
on the building and background (BG) classes. Recognition rates are computed
pixel-wise over the entire dataset.

True\Pred BG Building

ADB 63.58 36.42

BMA BG 72.73 27.27

BMA+D 75.33 24.67

ADB 24.67 75.33

BMA Building 23.97 76.03

BMA+D 23.51 76.49

ADB 0.6876

BMA F-scores 0.7282

BMA+D 0.7421

Table 2: Recognition rate for the building class on the eTrims 8-class dataset
[34]. Note: BMA performs 2-class labeling, all other methods perform 8-class
segmentation.

Method Rec. Rate (%)

ICFHGS- [35] 71.9

BMA 70.3

ICF [35] 62.0

RDF-meanshift [36] 60

RDF-watershed [36] 59

ICFwoC [35] 41.1

0.5. Of these six examples, the appearance-only BMA model
achieved the best accuracy (2% more than BMA+D) for one
image, and the AdaBoost classifier achieved the best accuracy
(4% more than BMA+D) for another. However, for the other
examples, the BMA+D model outperforms the other classifiers
by as much as 8%, and the confidence shown in the probabil-
ity map is often higher for both classes. Since the probability
map acts as a prior for the mid-level MRF labeling, higher con-
fidence from discriminative modeling can translate to higher
accuracy in the MRF binary classification.

Although the state-of-the-art in facade segmentation comes
as part of multi-class approaches, we compare the two-class
BMA approach to the methods in [36, 35] in Table 2 in order to
place our results in the context of the existing literature.Since
our BMA+D and MRF methods require disparity maps in ad-
dition to camera imagery, we are limited to comparison with
the appearance-based BMA version. These semantic segmen-
tation methods use the eTrims dataset [34] and label buildings
as well as 7 other classes. We performed two-class labeling,
an admittedly easier task, on the same dataset, using 40 images
for training and 20 for testing as in [35]. But since our goal
of facade modeling does not require full semantic segmentation
of the scene, we do not extend our approach to the multi-class
case. The performance without the inclusion of disparity fea-
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Figure 6: ROC curves for our BMA+D method (blue), appearance-only BMA
(red), and patch-based AdaBoost (green).

Table 3: Quantitative scores for the mid-level MRF labelingand the BMA+D
classifier on the building and background (BG) classes.

True\Pred BG Building

BMA+D
BG

75.33 24.67

MRF 79.98 20.01

BMA+D
Building

23.51 76.49

MRF 21.15 78.85

BMA+D
F-scores

0.7421

MRF 0.7773

tures or subsequent MRF segmentation is consistent with the
labeling accuracy of the building class from the state-of-the-art
multi-class labeling approaches.

5.2. Facade Detection

The mid-level MRF results exhibit further improvement in
accuracy over BMA+D alone. Table 3 shows a pixel-wise quan-
titative comparison of these two methods. With the Bayesian
inference of the MRF, we achieve a classification accuracy of
almost 80% for each class, and an improvement in overall ac-
curacy of 9% over AdaBoost, 5% over BMA, and 3% over
BMA+D.

5.3. Facade Segmentation and Parameter Estimation

We computed the facade segmentations and the plane param-
eters for each of the labeled planes in all of the images from
the dataset; some examples are shown in Figure 9. For each
of the manually labeled planes in the dataset, we computed
ground truth parameters by sampling the labeled region and us-
ing RANSAC to determine the plane parameters. Out of 251
total facades in the set, 40 of them were misclassified as back-
ground by the mid-level labeling. The other 211 facades were
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0.750
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0.588

Figure 7: Some examples of discriminative model output. Oneimage was selected at random from each of the 6 validation sets. F-scores are annotated on each
classified image.

labeled with at least one candidate plane in the high-level label-
ing for a detection rate of 84%.

As noted above, some of the ground truth facades are not
detected by the mid-level MRF, but multiple segmented planes
per ground truth facade are also common. In order to assess
the accuracy of our plane parameter estimation, we compute
a weighted error measure as the mean pixel-wise angular error
between the labeled plane and the ground truth facade, averaged
over all pixel in the dataset where the ground truth and high-
level labeling are both non-null. Our angular error metric is the
dihedral angle between the estimated plane and the ground truth
plane (with normal vectorsne andng, respectively):

φ = arccos(ne · ng)

The average angular error for any such pixel over the entire
dataset is 24.07◦. A histogram showing the relative number of
pixels labeled with a plane model having angular error in each
bin (see Fig. 8) indicates that the peak of the distribution of
errors is the range of 0− 10◦. Similarly, the examples shown
in Figure 9 indicate that some facades are modeled very accu-
rately, while others have high angular error. This discrepancy
motivates our further analysis, which we discuss in the nextsec-
tion.

5.4. Analysis
Our method often segments a detected facade into multiple

plane labels, which makes 1-to-1 comparison difficult. In order
to overcome this challenge, and to examine the error distribu-
tion of Fig. 8 further, we consider two methods for comparing

0 10 20 30 40 50 60 70 80 90

Angular Error (deg)

Figure 8: Pixel-wise angular error histogram representingthe relative number
of pixels that are labeled with a plane model having corresponding angular error
across the full dataset .
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Figure 9: Some examples of MRF labeling output. For each ground truth facade (blue), the closest-fitting plane from the MRF (green) is projected along with it to
illustrate the accuracy of the estimation in three dimensions.

the segmentations to the ground truth. First, for each ground
truth facade, we compare to it the plane whose label occupies
the largest portion of that facade’s area in our segmentation. We
have noticed that there is often one (or more) accurate planees-
timate on each ground truth facade, but it may only cover a
minority of the ground truth facade. For example, in the second
example of Figure 9, the facade on the left in the ground truth
is best modeled by the plane corresponding to the white label
in the estimate, but the majority of that facade is labeled with
less accurate planes. In order to measure the accuracy of our
method in estimating at least some portion of each ground truth
facade, our second method of comparison chooses the most ac-
curate plane estimate out of the set of labels that cover each
facade’s region. In both cases, we compute the average angular
error between the chosen segmented plane (largest or best) and
the ground truth facade, weighted by the size of the segment,as
well as the average percentage of the ground truth facade cov-
ered by the chosen label. These results are collected in Table 4.
Additionally, for both methods a histogram showing the distri-
bution of chosen labels binned by both angular error and sizeas
a percentage of the frame area can be seen in Fig. 10.

These histograms indicate that most of the high-error seg-
mentations occur with small areas: for both of the methods, the
vast majority of facades larger than 10 % of the frame have less
than 10 degree error. This implies that the errors are generally
small (< 10 %) for the major facades in the image, and it may
be possible to restrict or post-process the labeling to eliminate

Table 4: Accuracy for our two methods of comparison to groundtruth: largest
segment and most accurate segment

Method Avg. Err. Avg. Size (% of GT area)

Largest 21.973 66.57

Best 13.765 53.00

the minor and erroneous plane labels, although that is beyond
the scope of this paper.

The quality of the disparity map is likely to be at least some-
what responsible for this phenomenon, as the usable range of
most stereo cameras is limited. For example, the camera used
to capture our dataset can only resolve features up to 45cmat
a distance of 15m. Thus, even moderately distant facades are
likely to be significantly more prone to large errors in theiresti-
mates; they will be both small in the frame and less likely to find
an accurate consensus set in RANSAC due to the uncertainty in
their disparity values. Similarly, for a facade with many in-
valid disparity values, it may not be sampled adequately, and
the points it does have may erroneously be included as part of
an inlier set that does not actually lie on the facade. Perhaps
on account of this phenomenon, we have observed that many of
the high-error segmentations are rotated primarily about ahor-
izontal axis, but are much more accurate in their rotation about
a vertical axis. Under the assumption that facades tend to be
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Figure 10: Histogram of angular error per segment, with associated segment
size (as a % of the image) for the largest segment (top) and themost accurate
segment (bottom). Blue represents smaller error and red represents larger error.

vertical planes, it would be possible to impose a verticality con-
straint into the RANSAC plane model to restrict the candidate
plane set to only vertical plane models.

Without the context of the ground truth facade segmentation,
it would not be possible to choose the largest or best label as
we do in this analysis, but it is encouraging that on average we
are able to achieve< 15% error over a majority of each facade.
This result will motivate some of our future work in developing
ways to better disambiguate the labels in order to decrease those
average errors and increase the area of the most accurate labels.

6. Conclusions

We have presented a system for automatic facade detec-
tion, segmentation, and parameter estimation in the domainof
stereo-equipped mobile platforms. We have introduced a dis-
criminative model that leverages both appearance and disparity
features for improved classification accuracy. From the dispar-
ity map, we generate a set of candidate planes using RANSAC
with a planar model that also incorporates local PCA estimates
of plane normals. We combine these in a two-layer Markov

Random Field model that allows for inference on the binary
(building/background) labeling at the mid-level, and for seg-
mentation of the identified building pixels into individualpla-
nar surfaces corresponding to the candidate plane models deter-
mined by RANSAC.

Our BMA+D discriminative model provides superior perfor-
mance to other classifiers using only appearance features, and
our mid-level MRF labeling has proven to further improve the
accuracy of the classification to approximately 80%. We were
able to identify 84% of the building facades in our dataset, with
an average angular error of 24◦ from the ground truth. However,
the distribution of errors peaks in frequency below 10◦, indicat-
ing that a large percentage of the labels provide very accurate
estimates for the ground truth, although some of the labels pro-
duced by our method have very high error. Further analysis
shows that these high-error labelings most often occur on small
segmented regions. Thus our method produces accurate plane
estimates for at least the major facades in the image.

A further approach that may enhance these results is strict
enforcement of a verticality constraint on the candidate plane
models. Extraction of the ground plane would enable us to
leverage the assumption that building facades, in general,are
perpendicular to the ground plane. Using only locally vertical
candidate plane models is an avenue of future work in this area.
Another avenue for future investigation is the integrationof the
distance-based uncertainty of each point in disparity space into
the RANSAC models in order to encourage plane fitting to the
more accurate points close to the camera. We also intend to
pursue other methods for either improving the quality of thein-
put data (e.g. multiview stereo) or improving the methods of
compensating for difficult disparity maps.
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