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Abstract- Localization and modeling of stairways by mobile 
robots can enable multi-floor exploration for those platforms 
capable of stair traversal. Existing approaches focus on either 

stairway detection or traversal, but do not address these 
problems in the context of path planning for the autonomous 
exploration of multi-floor buildings. We propose a system 
for detecting and modeling ascending stairways while per­
forming simultaneous localization and mapping, such that the 
traversability of each stairway can be assessed by estimating its 
physical properties. The long-term objective of our approach 
is to enable exploration of multiple floors of a building by 

allowing stairways to be considered during path planning as 
traversable portals to new frontiers. We design a generative 
model of a stairway as a single object. We localize these models 
with respect to the map, and estimate the dimensions of the 
stairway as a whole, as well as its steps. With these estimates, 
a robot can determine if the stairway is traversable based on 
its climbing capabilities. Our system consists of two parts: a 
computationally efficient detector that leverages geometric cues 
from dense depth imagery to detect sets of ascending stairs, and 
a stairway modeler that uses multiple detections to infer the 
location and parameters of a stairway that is discovered during 
exploration. We demonstrate the performance of this system 
when deployed on several mobile platforms using a Microsoft 
Kinect sensor. 

I. INTRODUCT ION 

Autonomous ground robots have traditionally been re­

stricted to single floors of a building or outdoor areas 

free of abrupt elevation changes such as stairs. Although 

autonomous traversal of stairways is an active research area 

for some humanoid and ground robots, the focus within 

the vision and sensor community has been on providing 

sensor feedback for control of the mechanical aspects of stair 

traversal, and on stair detection as a trigger for the initiation 

of autonomous climbing, rather than on stair traversability. 

The restriction to a single floor presents a significant 

limitation to real-world applications such as mapping of 

multi-floor buildings and rescue scenarios. Our work seeks a 

solution to this problem and is motivated by the rich potential 

of an autonomous ground robot that can climb stairs while 

exploring a multi-floor building. 

A comprehensive indoor exploration system could be 

capable of autonomously exploring an environment that con­

tains stairways, locating them and assessing their traversabil­

ity, and then engaging a platform-specific climbing routine 

in order to traverse any climbable stairways to explore other 

floors. The physical properties of a stairway may limit the 
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Fig. I. High level workflow of the proposed system, consisting of 
two modules: stair edge detection and stairway modeling. Stair edges are 
extracted from depth imagery and collected over many observations into an 
aggregated point cloud. Periodically, a generative model of a stairway is 
fit to the aggregate cloud and its parameters re-estimated. The result is a 
model localized with respect to the robot's map of its environment. Figure 
is best viewed in color. (Data: Building I Front trial of the MOUT dataset) 

platforms that are capable of climbing it. For example, a 

humanoid robot may not be able to climb some stairways 

due to step height, and a ground robot may be restricted to 

stairways with a low pitch due to its weight distribution. Our 

proposed approach is an effort to integrate the existing work 

in autonomous stair climbing with autonomous exploration: 

a system to detect and localize stairways in the environment 

during the process of exploration, and model any identified 

stairways in order to determine if they are traversable by the 

robot. 

With a map of the environment and estimated locations 

and parameters of the stairways, the robot could plan a path 

that traverses the stairs in order to explore the frontier at other 

elevations that were previously inaccessible. For example, a 

robot could finish mapping the ground floor of a building, 

return to a stairway that it had previously discovered, and 

ascend to the second floor to continue exploring if that 

stairway is of dimensions (i.e. step height, width, pitch) that 

are traversable by that particular platform. 
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Our proposed system directly addresses the needs of an 

exploratory platform for solving the problem defined above. 

We seek to answer the question "Is this traversable?" when 

a stairway is discovered during exploration. The questions 

"When should I traverse that?" and "How do I traverse that?" 

are left for the path planner and stair climbing routines, 

respectively. The system is composed of a stairway detection 

module for extracting stair edge points in 3D from depth 

imagery and a stairway modeling module that aggregates 

many such detections into a single point cloud from which 

the stairway's dimensions and location are estimated (see 

Fig. 1). 

Our detection algorithm leverages the property of range 

discontinuity that step edges exhibit in the depth field. Mod­

eling the stairway over many detections allows the system 

to form a complete model from many partial observations. 

We model the stairway as a single object: an inclined plane 

constrained by a bounding box, with stair edges lying in the 

plane. As new observations are added to the aggregated point 

cloud, the model is re-estimated, outliers are removed, and 

well-supported stair edges are used to infer the dimensions 

of each step. These physical properties can then be used 

by a path planner to determine the traversability of stairs in 

relation to the specific robotic platform. Section II contains 

a more in-depth description of our approach. Autonomous 

multi-floor exploration is a new behavior for ground robots, 

and we present this work as a first step toward the realization 

of that capability. 

A. Related Work 

Other systems have been proposed for related tasks, in­

cluding the actual platform-specific autonomous climbing 

procedure, but no existing work approaches the problem in 

the context of the aforementioned scenario. The problem we 

are considering is the evaluation of stairways as traversable 

terrain for path planning, and as such, we aim to localize 

and then estimate the physical properties of a stairway to 

determine if it is traversable. A path planning algorithm 

such as [1] could incorporate these stairway properties and 

the robot's climbing capabilities into its decisions about ob­

stacle traversal. Previous measures of stair travers ability [2] 

considered stairways as generic obstacles and only evaluated 

the height of the first step to determine whether to attempt 

traversal. Unlike that system, which does not differentiate 

individual obstacles and groups of stairs, we attach the 

semantic concept of stairway to the obstacle because it likely 

leads to unexplored areas. Traversal of an obstacle does not 

have such an association, and therefore it is important, from 

a path planning perspective, to know both the class of the 

object and its traversability. 

Several existing methods [3]-[5] perform stairway detec­

tion but immediately initialize a traversal procedure with 

their respective platforms, which is not necessarily desirable 

in an exploration scenario. These works assume that the 

robot is located near the stairway, but not aligned with it. 

As such, these methods do autonomous exploration until 

they detect the stairway, and only serve to trigger the 

autonomous traversal phase of their systems. Rather than 

model the stairway or assess the traversability, they provide 

only a bearing, and in some cases a distance, to the stairway 

relative to the robot's pose, in order to facilitate alignment 

and subsequent climbing. Although these capabilities are 

related to our problem scenario, immediate climbing is not 

necessarily compatible with exploration. Path planning for 

multi-floor exploration should take the stairway into account 

as a portal to more unexplored regions, but traversing stairs 

immediately upon a single detection makes exploring the 

low-cost frontiers of the original floor more difficult and may 

fail if the detection was erroneous. 

The works by Hernandez and Jo [6] and Hernandez et al. 

[7] represent the most similar approaches to ours in terms 

of the goal of detecting and localizing sets of stairs, but are 

independent of modeling or mapping. In [6], they segment 

outdoor staircases from single monocular images using line 

detection and vanishing point analysis, and in [7] they use 

some of the same line techniques (Gabor filtering) along 

with motion stereo to detect and localize indoor stairways. 

However, the scope of the works are similarly limited to 

detection and a computation of bearing relative to the robot's 

pose. 

Our proposed system overcomes these limitations by mod­

eling the stairway and anchoring the model to a simultane­

ously constructed map. Since immediate climbing is not nec­

essary, the stairway can be considered as traversable terrain 

for path planning, and these same climbing procedures can 

be initiated at a later time when the robot's path requires 

traversal of the stairway. 

A number of existing approaches perform modeling of 

individual steps or sets of stairs. However, these methods pro­

duce fine-grained models for humanoid robot stair climbing 

[8], [9], or for obstacle negotiation for the visually impaired 

[10]. Another method proposes a minimal inclined plane 

model, but uses it to produce a 3D reconstruction for robot 

obstacle detection [11], and does not localize the model 

with respect to a map nor estimate its physical parameters. 

However, these detailed models and 3D reconstructions are 

not mutually exclusive of our proposed approach. Since 

precise step locations are often needed for stair climbing (for 

humanoid robots, for example), these models could always 

be produced once a path planner has decided to climb a 

traversable stairway. 

In [9], OSwald et al. assemble 3D point clouds by tilting 

a 2D ladar mounted on the robot's head, and then extract 

planes for the steps and risers, and estimate the average 

step dimensions. However, this modeling is done while the 

robot is already close to and manually aligned with the 

stairway and is repeated periodically during its ascent. Our 

approach, on the other hand, observes the stairs passively 

during exploration. For those platforms that require a more 

detailed plane-based model, the approach in [9] could always 

be performed while the robot climbs the stairway. This is the 

only other approach that performs parameter estimation for 

step dimensions, and in Sec. III we demonstrate comparable 

accuracy with our minimal stairway model. However, we 
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produce our results passively, at a distance, and without 

explicit alignment to the stairway. 

The aforementioned climbing methods use edge detection 

from camera imagery [5], and range discontinuity detection 

from horizontal ladar [3] or vertical ladar [4] data, to detect 

stairs. Other stair edge detection systems have been proposed 

in the context of controller feedback for stair traversal [12], 

[13] and object detection from monocular [14] or stereo 

imagery [11]. Our range discontinuity-based detector incor­

porates line extraction ideas from many of these systems, 

but we apply these techniques to dense depth data provided 

by an RGB-D camera. The registered point cloud that is 

output from these cameras alongside the depth image allows 

for extraction of 3D data corresponding to step edges, and 

enables our modeling approach. 

Some recent work in multi-floor mapping may provide 

some of the tools for implementing our desired comprehen­

sive system. Shen et al. [15] have demonstrated that multi­

floor exploration is possible in open indoor environments 

with an unmanned aerial vehicle. Although their platform 

by nature avoids the need for stair detection and traversal, 

their approach for mapping may one day be applicable 

for ground vehicles. The barometric method presented by 

Ozkil et al. in [16] for measuring elevation, and therefore 

distinguishing floors of a building, will likely also be useful 

in implementing our desired multi-floor exploratory system. 

The most comprehensive system yet presented is also one 

that aims to perform the complementary task to our detection 

and localization of ascending stairs: detection and traversal of 

descending staircases. Hesch et al. [17] use a combination of 

texture, optical flow, and geometry from a monocular camera 

to detect candidate descending stairwells, navigate to them, 

and then align with and traverse them. Although they do not 

perform any explicit mapping of stairwell location or present 

quantitative accuracy results, their implementation runs in 

real time and the detector module from their implementation 

could be extracted and paired with our ascending stair 

detector in a comprehensive multi-floor mapping system. 

No system has yet been proposed for both ascending and 

descending stairway detection and traversal. 

B. Contributions 

We have deployed our stairway detection and modeling 

system on an iRobot PackBot as well as a Turtlebot, both 

fitted with Microsoft Kinect depth sensors. In principle, this 

modeling system could be deployed on any platform with an 

RGB-D sensor, such as our Turtlebot, for stairway detection 

and traversability analysis. For stair climbing robots, such as 

the PackBot or Aldebaran Nao, this system can potentially be 

paired with more fine-grained and platform specific modeling 

approaches for facilitating the act of stair climbing. Our sys­

tem runs in real time and demonstrates robust and accurate 

performance in both localization and parameter estimation 

for a wide variety of stairways (see Sec. III). 

This paper presents the following contributions: 

• Initial step toward new ground robot behavior: au­

tonomous multi-floor exploration. Locate stairways dur-
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Fig. 2. An example frame from an indoor testing video. Top row (L to R): 
source depth image, edge image, edge image with boundary lines removed. 
Bottom row (L to R): candidate lines (in red) before filtering for orientation 
and clustering, candidate lines after filtering, marked up camera image with 
bounding box. 

ing mapping of environment, assess their traversability, 

and later ascend them to explore new frontiers. 

• A minimalist generative stairway model: an inclined 

plane constrained within a bounding box. This provides 

enough detail to determine if the stairway is traversable 

by the robot, and if necessary, more detailed modeling 

can be performed in the context of subsequent stair 

traversal. 

• Aggregation of many partial views into a coherent 

object model. Re-estimation and outlier removal permits 

estimation of a robust aggregate model in the presence 

of imprecise alignment for each observation. 

II. METHODS 

A. Stair Edge Detection 

Inspired by some of the techniques used in other methods 

[4]-[6], [8], [11]-[13], we have developed an ascending 

stairway detector that exploits the geometric properties that 

steps display in depth images. On a deployed system, it runs 

in real time with high accuracy and robustness. In particular, 

we find lines in a depth image that represent discontinuities 

where the depth from the camera changes abruptly. In the 

depth field, a set of stairs will have a discontinuity at the edge 

of each step that is above the height of the sensor. The tops 

of lower steps will be visible in the sensor's field of view, 

and may not exhibit a strong enough depth discontinuity to 

be detected as edges. Regardless of the horizontal rotation 

of the camera relative to the stairs, these discontinuities will 

form a set of nearly parallel lines (with some perspective 

foreshortening effects) for all but tight spiral staircases. We 

leverage this distinct depth signature by detecting all such 

lines of discontinuity in the image, filtering and clustering 

them to find a near-parallel set, and ultimately fitting a plane 

to the extracted stair edge points to confirm or reject the 

stairwell candidate hypothesis if they lie on an inclined plane 

of traversable pitch. By detecting these lines of discontinuity 

in the depth field rather than a camera image, our detector 

is robust to appearance. 

Given an input depth image, our algorithm proceeds 

following the steps in Alg. 1, further details of which can be 
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Fig. 3. Stairway with corresponding model consisting of bounding box 
(green), planar model (blue), and step edges (red), as well as edge point 
cloud support for step edge lines (rainbow). Figure is best viewed in color. 
(Data: Davis Hall Front trial from UB dataset) 

found in [18]. Please refer to Fig. 2 for visual reference. We 

enforce several physical constraints to restrict the lines of 

range discontinuity to stair edges, and extract the 3D points 

that correspond to the edges that satisfy all of them. We 

additionally fit a planar model to each set of extracted points, 

and only confirm a positive detection if the plane is at a 

traversable angle. Observations that pass these tests are then 

provided to the stairway modeler. 

Our depth image and point cloud based approach was 

motivated by our ultimate goal of 3D modeling. However, 

many of the existing line-based stair detection methods 

could be modified to produce point cloud observations of 

extracted step edges if they operated on data from an RGB­

D camera, and could in principle provide the observations 

for our modeler in place of this detector. Since this paper is 

focused on modeling and parameter estimation, and not on 

stair detection, we do not fully evaluate our detector against 

these other approaches here. 

Algorithm 1 Stair Edge Detection 

1: Input: depth image D and co-registered point cloud P provided 
by depth sensor 

2: Do Canny Edge Detection on D to produce edge image E 
3: Remove boundary edges from E (bordering 0 valued depth) 
4: Generate a set of candidate lines L using the Probabilistic 

Hough Transform on E 
5: Merge collinear lines and compute slope histogram for L 
6: Extract lines in the bin with largest frequency into L' 
7: Compute bounding box B for maximal set of vertically over­

lapping lines in L' 
8: Remove all lines from L' that do not fall within B 
9: Reject if 1 L' 1< 3 (enforce multiple steps) 

10: Extract from P the points on the lines in L' into p' 
11: Fit a least squares plane p to the points from p' 
12: Reject if dihedral angle (¢ = arccos (np . nhoriz ) from the 

horizontal is > the robot's maximum climbable stair pitch 
13: Return p' 

B. Stairway Model 

We propose a generative model to represent a stairway as 

a single object. For localization and path planning purposes, 

piecewise planar models provide more detail than necessary 

for travers ability analysis, when the questions "Are these 

steps too tall?" or "Are these stairs too steep?" can be 

answered with a simpler model. Although more detail does 

not detract from the model, the need for close proximity and 

alignment with the stairway, as in [9], limits the effectiveness 

of other approaches for this purpose, even if the computa­

tional cost is not restrictive. We instead aim to enable passive 

sensing of the stairway from a distance, such that modeling 

can be performed concurrently with exploration. Localization 

on a map should enable the robot to return to ascend the stairs 

at a later time if they are determined to be traversable. 

Our model consists of an inclined plane constrained by 

a bounding box, with stair edges wherever there are well­

supported clusters in the plane (see Fig. 3). This model is 

parameterized by the bounding box centroid (Bx,By,Bz) and 

dimensions (H,W,D), pitch relative to the ground plane (P), 
and step dimensions (h,d). We assume that stair steps are 

approximately parallel to the ground plane, so the bounding 

box top and bottom are parallel to the XY plane. For an 

inclined plane model of: 

ax + by + cz + d = 0 (1) 

the planes constituting the bounding box are given by: 

H 
z = Bz ± 2 (2) 

a(x - Bx) + b(y - By) ± � ( J a2 + b2) = 0 (3) 

-cb(x-Bx)+ca(y-By)± � (cJa2+b2) =0 (4) 

for the toplbottom, front/back, and sides, respectively. Here, 

the pitch P is computed as the dihedral angle of the planar 

model and the ground plane: P = arccos ([a, b, c] [0,0, l]T) . 
We infer the parameters of the model from the extracted 

points corresponding to step edges. 

C. Localization and Modeling 

In order to build up a complete model of a stairway, 

we piece together many incomplete views, potentially from 

many different perspectives, and estimate the parameters of 

the model from the aggregate pool of data. Our modeling 

system is capable of modeling multiple stairways in the same 

environment. Input observations are assigned to stairway 

models based on proximity; if an observation's centroid 

is within 2m of the centroid of an existing model, it is 

added to that model, otherwise a new model is spawned. In 

practice, this distance threshold is adequate for differentiating 

most real world stairways. However, a more sophisticated 

approach to the assignment of observations, and a thorough 

evaluation of the modeling of multiple stairways is left for 

future work on autonomous stairway discovery. Algorithm 2 

details the steps in parameter estimation for each model in 

the environment. 

Starting with an empty point cloud representing the stair 

edges for a new model, we add to it the extracted edge points 

from each subsequent observation. We do not explicitly align 

the detected edges, but instead rely on the robot's estimated 

pose to approximately align the independent observations, 

and implement a number of statistical techniques to ensure 

that the resulting model is robust to outliers and imprecise 
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point cloud alignment. Ultimately, the quality of the model 

will depend on the quality of the robot's estimated pose, 

but individual false positive detections or misaligned obser­

vations are removed as statistical outliers, as detailed below. 

However, since we consider the task of stairway modeling in 

the context of exploration, the robot's performance at both 

map building and stair detection will be dependent on the 

quality of its odometry. 

Since each observation only adds a partial view of the 

stairway, we periodically re-estimate the parameters of the 

model (in our experiments, after k = 5 or 10 observations). 

When deployed on the PackBot and during post-processing 

of recorded data on a Mac Mini, our detector operates 

at over 20Hz on average, including the time to fit the 

model (compared to the Kinect's 30Hz frame rate). Although 

more frequent modeling is possible, we expect the model's 

parameters to converge over many observations, so we do not 

anticipate a need for more frequent updates if the information 

is to be used for traversability analysis. We perform the 

following steps in order to estimate the model's parameters. 

To prevent our aggregate edge point cloud E from growing 

without bound, we first downsample E to a lcm voxel grid. 

We perform statistical outlier removal using the algorithm in 

[19] in order to reduce sensor noise in the extracted points 

in E. To the remaining points we fit a planar model p with 

RAN SAC [20] and remove any outliers from the model from 

E. 

We then infer the parameters of the stairway model from 

the remaining points in E. We determine the bounding box 

centroid and dimensions by fitting a rectangular prism to 

the data that is aligned with the ground plane but rotated 

in the XY plane to match the alignment of p. We next 

compute the cross-sectional orthogonal plane that passes 

through (Bx,By,Bz) and project the points of E to it. When 

accounting for alignment errors and unequal observation of 

each step, we would expect there to be a cluster of projected 

points around each step edge. We therefore find Euclidean 

Clusters on the projected plane using the Point Cloud 

Library's Segmentation Module [21] and treat each well­

supported cluster center (n > 250 points) as a stair edge. 

We compute the differences in height and depth between 

each pair of adjacent cluster centers, and then average these 

differences to determine the step dimensions (h and d). 

III. EXPERIMENTS 

Our system has been tested on data collected at a Military 

Operations in Urban Terrain (MOUT) site, on all of the 

available stairway types and on numerous negative examples. 

It has also been tested at a building at the SUNY at 

Buffalo (UB) campus. These data sets consist of 5 recorded 

trials (3 and 2, respectively) with ground truth stairway 

dimensions. The set of trials included stairways of a variety 

of step sizes and building materials (metal, concrete, etc.), 

ranged from a few steps to a full flight, and included one 

outdoor stairway. In each case, the robot was teleoperated 

around an environment, observing both the stairway and its 

surroundings from a variety of perspectives. We are currently 

Algorithm 2 Stairway Modeling 

1: Initialize point cloud E to be empty for model Mi 
2: Define the modeling period k: number of observations between 

model fittings 
3: for Each detection p' (see Alg. 1) that is assigned to Mi do 
4: Add points from p' to E 
5: if # of detections is divisible by k then 
6: Downsample E to fine voxel grid 
7: Perform statistical outlier removal (as in [19]) 
8: Fit a plane m to E using RAN SAC and compute pitch 

relative to ground plane 
9: Remove outliers of m from E 

10: Fit bounding box B to E and compute stairway dimen­
sions (H,W,D) 

11: Project E onto cross-sectional plane x, orthogonal to m 
and passing through bounding box centroid 

12: Find Euclidean Clusters C from projected cloud Ep and 
compute their centroids 

13: Sort C by ascending height, and compute differences in 
height and depth between adjacent centroids with > n 
points of support 

14: Average height and depth differences to compute step 
dimensions (h, d) 

15: end if 

16: end for 

developing techniques for integrating our modeling approach 

into autonomous exploration, but for this study we wished 

to evaluate only modeling performance. We plan to publicly 

release these datasets upon publication. 

Our experiments use an iRobot PackBot mounted with a 

Microsoft Kinect depth sensor for the MOUT trials, and a 

Turtlebot (also with a Kinect sensor) for the UB data. Our 

system is implemented in C++ in the Robot Operating Sys­

tem (ROS) environment, with image processing performed 

using OpenCV, and point cloud processing with the Point 

Cloud Library (PCL) [21]. Although the Kinect restricts 

the usable range of the detector and limits outdoor use to 

shaded areas, the dense depth image it produces provides 

high quality input data for our system. The outdoor data 

captured at the MOUT site indicated good performance with 

even somewhat compromised depth data. In principle, our 

approach could be applied to dense stereo depth data, with 

appropriate adjustments to the parameters of the algorithm, 

but this is as yet untested. 

Visual results of modeling for all trials in the two data sets 

can be found throughout this paper in Figs. 1, 3, and 4. 

Where possible, rendered 3D models of the corresponding 

buildings were superimposed and aligned with the map such 

that the stairway model is overlaid. In each image of a model, 

the bounding box is represented in green, the planar model 

in blue, and any step edges in red. 

A. Modeling Accuracy 

We measured ground truth step dimensions and pitch for 

our trials, and we present those results in Table I. Each of 

these results was achieved with < 100 observations. The 

model estimates for step dimensions are accurate to within 

2cm and the pitch to within 3°, on average. However, one 

frequent source of inaccuracy is underestimation of the step 
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Fig. 4. Results of several runs from our datasets: Building 1 Rear (top left), Building 3 (top right), Building 1 Front (bottom left), and Davis Hall Rear 
(bottom right). Model components shown are the bounding box (green), planar model (blue), and step edges (red), as well as edge point cloud support for 
step edge lines (rainbow). Figure is best viewed in color. 

width, with a mean error of 17 em. This is expected, though, 

based on the stair detection procedure, which only extracts 

edge points in a horizontal window of the depth image where 

all of the edge lines overlap, leading to observations that are 

always narrower than the lines producing them, especially 

for the lower steps (see Fig. 2). Each trial's results indicate 

sufficient accuracy for a robotic platform to assess whether 

that stairway's physical dimensions would be traversable. 

We also present some results showing the convergence of 

the models for several trials. Fig. 5 shows the evolution of 

the model parameters over time for the two UB trials. Here, 

all of the parameters are normalized by their ground truth 

values, so each quantity should tend toward l over time. 

Both trials indicate that after a small number of detections, 

the models approach their final state. 

B. Comparison 

The only other stairway modeling approach to present 

quantitative results on parameter estimation is [9]. In this 

work, two plane fitting algorithms are implemented (Scan­

Line Grouping and Two-Point Random Sampling) for mod­

eling stairways from point clouds for humanoid robot climb­

ing. For their trials, the robot is aligned at a distance of 70em 
from the base of the stairs when it captures a point cloud 

and fits a stairway model using one of the two algorithms, 

in the end estimating its step dimensions. The procedure is 

then repeated with the robot on odd-numbered steps as it 
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TABLE I 

TABLE OF MODEL STEP ESTIMATES AND GROUND TRUTH VALUES (GT) 

(IN em) 

Trial Height 

B.l Front 17.4 
GT 19.6 

8.1 Rear 16.6 
GT 19.6 
B.3 16.9 
GT 19.2 

Davis Front 17.5 
GT 18.1 

Davis Rear 16.9 
GT 16.5 

Mean Error 1.7 
Std. Dev. 1.4 

I
: SO.ph.i,hl 
-Slep depth 
- Stairway width 
-Stairway pitch 
---Oroundtruth 

Depth Width Pitch (0 ) 
25.7 97.7 34.0 
25.4 96.5 37.6 
25.2 71.5 33.0 
25.4 96.5 37.6 
24.5 68.9 35.4 
26.3 101.5 36.2 
32.3 107.6 28.3 
30.5 122.6 30.7 
31.1 104.8 29.4 
29.2 117.5 29.5 
1.2 17.3 2.3 
1.6 12.8 1.88 

-Step height 
-Stepdeplh 
-Stairway width 
-Stairway pitch 

� ---Oroundtruth 

�u 
� � 1 ___ ____________ _ _ 

� 

Fig. 5. Convergence of normalized model parameters for Davis Front (top) 
and Davis Rear (bottom) trials from the UB dataset. 

climbs. Each point cloud was acquired by nodding a head­

mounted 2D laser scanner to produce a 3D point cloud with 

approximately 130,000 points. 

We compare the mean modeling errors for our trials with 

the results in [9], using the respective datasets. Neither 

the data nor the source code for their system is publicly 

available, so a more direct comparison using a COlmnon 

dataset is not possible. Additionally, the input data for the 

two approaches are of different modalities. A tabulated error 

comparison of their two methods with ours can be found 

in Table II. Since the stairway being modeled in [9] is 

specially designed so a small humanoid robot can climb 

it, its steps are of significantly smaller size than a regular 

stairway that adheres to building codes. Our trials were 

conducted on five distinct full-size stairways, so we give 

percent error for comparison for the step height, depth, and 

width dimensions, and for our data it is averaged over our 

five trials. However, since these data sets are different, some 

visual characteristic idiosyncracies may render the numbers 

not in perfect correspondence. 

In step height and depth, our results are comparable, if 

not marginally better. The error for step width, however is 

3 - 4 times higher for our method. This is due to the nature 

of our detector's rectangular bounding boxes. In practice, 

unless the robotic platform is wider than a human being, the 

width of the step is less restrictive to its traversability than 

the step height or pitch, and for robotic traversal it safer to 

underestimate this parameter. 

In their plane-based methods, OSwald et al. [9] measure 

angular errors by deviations for planes that are supposed to 

TABLE II 

TABLE OF STEP MODELING ERROR S  FOR THI S METHOD AND THE 

SCAN-LINE GROUPING (SLG) AND TWO-POIN T RANDOM SAMPLING 

(TPRS) METHODS IN [9] (AVG ± STD) 

Quantity This Method SLG TPRS 

Height Error (cm) 1.7±1.4 0.42 ± 0.31 0.68 ± 0.54 
Percent 8.9 6.0 9.7 

Depth Error (cm) 1.2 ± 1.6 1.17 ± 0.67 0.90 ± 0.61 
Percent 4.2 6.5 5.0 

Width Error (cm) 17.3 ± 12.8 3.40 ± 1.95 2.25 ± 1.97 
Percent 16.5 5.7 3.8 

Pitch Error 2.3 ± 1.9 
Plane Error (parallel) 2.22±2.17 1.14 ± 1.13 

Plane Error (90° ) 4.97 ± 2.13 3.12 ± 1.47 

be parallel and those that are supposed to be perpendicular. 

However, our planar model measure pitch relative to the 

ground plane. Both types of angular errors have been pre­

sented in Table II. Although they are measures of different 

model properties, the angular errors for all three methods 

are comparable as well. The Scan-Line Grouping algorithm 

runs at approximately 40Hz and the Two-Point Random 

Sampling method at O.32H z, compared to our method at 

20H z (concurrent with mapping). 

IV. CONCLUSIONS AND FUT URE W ORK 

We present a novel, minimal, generative model for a 

set of stairs, as well as a system for fitting that model to 

data extracted and aggregated from many observations of a 

stairways with an RGB-D sensor. Our model is sufficiently 

detailed to permit the robot to determine the traversability 

of a set of stairs, while simple enough to be computed in 

real time and robust to errors. Providing the observations 

for the modeling module is a stair detector that uses image 

processing techniques to find lines of depth discontinuity and 

enforce geometric constraints on them in order to extract the 

points on just the lines corresponding to stair edges. We have 

tested our system on a variety of stairways in both indoor 

and outdoor environments, and we are able to achieve high 

accuracy in estimation of a stairway's physical parameters. 

Our results from passive sensing during exploration are com­

parable to more detailed models that require initial alignment 

with the stairway. Thus, our approach can serve to assess 

stairways that are discovered while a robot is exploring a 

new environment before such detailed models are used to 

facilitate stair climbing by the robot. 

Ultimately, we want this work to enable a new robot be­

havior: fully autonomous multi-floor exploration by ground 

robots. With the localization and modeling system presented 

here, we aim to make some advancement toward that goal. 

Other problems that would still need to be solved include 

incorporation of elevation measurements into both mapping 

and exploration algorithms, execution of an autonomous stair 

climbing routine after a stairway is found, and modification 

of path planning algorithms to set stair traversal as a path 

with high, but finite, cost. This work represents an initial step 

toward autonomous multi-floor exploration by unmanned 

ground robots. 
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