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Abstract—Microarray-based comparative genomic hybridiza-
tion (aCGH) offers an increasingly fine-grained method for
detecting copy number variations in DNA. These copy number
variations can directly influence the expression of the proteins
that are encoded in the genes in question. A useful analysis of
the data produced from these microarray experiments is pairwise
correlation. However, the high resolution of today’s microarray
technology requires that supercomputing computation and stor-
age resources be leveraged in order to perform this analysis. This
application is an exemplar of the class of data intensive problems
which require high-throughput I/O in order to be tractable.
Although the performance of these types of applications on a
cluster can be improved by parallelization, storage hardware and
network limitations restrict the scalability of an I/O-bound appli-
cation such as this. The Hadoop software framework is designed
to enable data-intensive applications on cluster architectures,
and offers significantly better scalability due to its distributed
file system. However, specialized architecture adhering to the
Active Disk paradigm, in which compute power is placed close
to the disk instead of across a network, can further improve
performance. The Netezza Corporation’s database systems are
designed around the Active Disk approach, and offer tremendous
gains in implementing this application over the traditional cluster
architecture. We present methods and performance analyses of
several implementations of this application: on a cluster, on a
cluster with a parallel file system, with Hadoop on a cluster,
and using a Netezza data warehouse appliance. Our results offer
benchmarks for the performance of data intensive applications
within these distributed computing paradigms.1

I. INTRODUCTION

The motivation for this investigation is the need for
biostatisticians to perform correlation analysis on the data
produced from Array Comparative Genomic Hybridization
(aCGH, but also known as Chromosomal Microarray
Analysis). In this technique, genes from the DNA of a cancer
cell and a healthy cell are tagged with different fluorescent
markers, and the ratio of their fluorescent intensities is
calculated for each gene. The data produced represents the
ratio of the gene copy number of the cancer cell to the control
cell, a good indicator of the level of that gene’s expression
in the individual. Newer microarray machines are capable
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of measuring 244,000 or even 1,000,000 different locations
within the genome. The data set initially produced is large,
but not unwieldy. However, an important analysis of that
data set is to measure the correlation of the value for each
gene with the values of all the others. This method is applied
in the investigation of the genetic causes of many types of
cancer, for example [7,8,9,10,11]. For a microarray with N
probes, this requires the calculation of an N-entry by N-entry
correlation matrix. At double precision, such arrays can reach
hundreds of gigabytes or more, prohibitively large sizes for
desktop systems and even some shared high-performance
computing resources. Aside from the storage requirements,
the resources required to compute the arrays in a reasonable
amount of time quickly advance beyond the capabilities of
desktop systems and require high-performance systems. From
this volume of data, only strongly correlated values must be
extracted, which presents the need for systems with high
throughput I/O. So in order to enable this analysis for the
newer, higher resolution, microarray hardware, the computing
systems need to be capable of high parallel scalability to
compute the data quickly, high volume storage to archive
the computed data, and high throughput I/O to scan the data
quickly for important values.

We have implemented this data-intensive application in four
different frameworks in order to compare their performance
and scalability: on a cluster, on a cluster with a parallel
file system, with Hadoop on a cluster, and using a Netezza
data warehouse appliance. These four implementations were
chosen in order to contrast the performance of a cluster using
a SAN server with that of the same compute nodes using
parallel and distributed file systems, as well as to compare
the Active Disk approach embodied by the Netezza system
with all three cluster implementations. We have developed
software for computing the row-wise correlation, as well
as performing queries against the correlation data for the
retrieval of significant values within each of these computing
paradigms. Although the ability of the end user to perform
this analysis on a traditional cluster is limited only by the



Fig. 1. The Snippet Processing Unit (SPU) includes a Disk, FPGA, general
purpose processor and dedicated memory.

available hardware resources, the performance comparison
indicates the need for a paradigm shift in the implementation
of data-intensive applications such as this.

A. Mathematical Formulation

The Pearson product-moment correlation coefficient, or
simply correlation, for two random variables represents the
degree to which they are linearly related. For a pair of random
variables (g1, g2), each with a mean µ, and standard deviation
σ, it can be expressed as:

ρg1,g2 = cov(g1,g2)
σg1

σg2

where cov (g1, g2) = E ((g1 − µg1) (g2 − µg2)). The copy
number ratio for each gene location in a data set is considered
a random variable. Data consist of multiple measurements
for each location, resulting in a two-dimensional data set
of N rows of measurements (one for each gene location)
of m samples each. For all of our implementations of this
application, the correlation is calculated for every pair of gene
locations in a data set using the following steps:

• Compute the mean (µ) and standard deviation (σ) for
each row in the data set.

• For each measurement, calculate its deviation from its
row mean.

• Multiply the corresponding deviations for the two rows
of data.

• Find the mean of those products and divide by the product
of the two rows’ standard deviations.

Since we are considering pairwise correlation among N dif-
ferent genes, this results in an N ×N correlation matrix if we
compute all possible pairs. However, since ρg1,g2 = ρg2,g1 ,
only the upper triangle of the matrix contains distinct values.
For all implementations, the degree of correlation does not
affect the performance of either generating or querying the
correlation matrix. The same number of computations must be
performed to calculate each entry in the resulting correlation
matrix, and a full scan of that matrix is performed, regardless
of the correlation of the values.

B. Related Work

Unlike gene-sequencing applications such as BLAST (Basic
Local Alignment Search Tool), to our knowledge, microar-
ray correlation has not been implemented on FPGA-enabled
hardware or on a cluster with Hadoop. Chilson describes
parallelizing a similar correlation computation for a cluster,

Fig. 2. The Netezza Performance Server System consists of a closely coupled
server with many parallel Snippet Processing Units (SPU), each with their own
disk, general purpose processor, dedicated memory, and FPGA.

but with a small data set [21]. There also exists an example
of Interactive Supercomputing’s Star-P software being used to
run this application in parallel with MATLAB [22]. However,
their demonstrated results are only for a small data set on a
shared-memory machine which can hold the entire correlation
matrix in memory. Since many biostatisticians prefer to work
in R, there are several new libraries to enable distributed com-
putations from R. SPRINT has been used on small problems
from this domain [23]. RHIPE enables R users to perform
computations with Hadoop, but no published examples exist
for this particular application [24].

C. Hadoop

Apache Hadoop Core is a software platform for processing
massive amounts of data efficiently across large clusters
of commodity hardware [14]. Hadoop Core consists of
the Hadoop Distributed File System (HDFS) and an
implementation of the MapReduce programming model. The
MapReduce algorithm specifies a Map function that processes
a key/value pair and generates an intermediate key/value pair,
a Reduce function then merges the intermediate key/value
pairs down to the final output [15]. The Hadoop framework
provides an API for creating MapReduce applications and
a system for running these applications (referred to as
MapReduce jobs) in a distributed environment over a cluster
of fault-tolerant commodity machines. The framework controls
the scheduling, monitoring, and execution of MapReduce
jobs along with the management of HDFS storage nodes. A
typical Hadoop cluster consists of a NameNode which serves
as the master node for the HDFS [16], a JobTracker which
serves as the central location for submitting and tracking
MapReduce jobs [17], and a number of slave servers running
both the DataNode/TaskTracker daemons [16].

A typical MapReduce job in Hadoop first splits the
input data into a set of independent chunks which are
processed in a parallel manner by the Map tasks (Mappers).



Fig. 3. Generation and Query times for both SAN and IBRIX

The output of each Map, in the form of key/value pairs, is
then sorted by the framework and passed as input to the
Reduce tasks (Reducers). The resulting output consists of one
file per Reduce task [18]. There is also a combine operation
(Combiners) which take place before the Map output is sent
to the Reduce tasks. Combiners can work on the Map output
in memory and perform a Reduce-type function [18]. This
allows for fewer key/value pairs sent to the Reducer resulting
in far fewer disk read/writes. The Microarray Correlation
application defines a custom Combiner for use in computing
the Top N values of the correlation matrix to decrease the
amount of values sent to the single Reduce task.

D. Netezza Architecture

An effective approach to data-intensive computation is to
integrate processing power and memory into a disk drive
and allow application-specific code to be downloaded and
executed on the data that is being read from or written to
disk [1,2]. This alleviates the network bottleneck between
the disk and the processor and this technology is commonly
referred to as Active Disks [2]. To utilize Active Disks, an
application is partitioned between a host-resident task and a
disk resident task [1,12]. The objective is to offload processing
to the disk-resident processors and to use the host processor
primarily for coordination, scheduling, and combination of
results from individual disks [1]. To accelerate the processing
further, one can use special-purpose hardware to optimize
certain kinds of operations. The Netezza Performance Server
(NPSTM) attempts to achieve this by using an array of
Snippet Processing Units (SPUs), each of which is a disk
attached to reconfigurable hardware, essentially an FPGA
(Field Programmable Gate Array), and a microprocessor. By
doing so, the special-purpose hardware can execute simple
computations on the data while it is streaming from the disk
(Fig. 1). Fig. 2 illustrates the overall structure of the NPS
system.

The innovation and performance of Netezzas NPS system
stems from the use of the FPGA, processor, and memory

Fig. 4. Generation and Query speedup for both SAN and IBRIX

close to the disk. The FPGA is central to Netezza’s FAST
Engines framework, performing critical filtering and query
processing functions as fast as data streams from the disk
drive on each SPU. The typical impact of this work is a
reduction of 95 percent or more in the data required for
further processing by the on-board CPU and memory. As
a commodity technology component, the FPGA is found in
just about any “streaming” data product in the market today:
from digital video recorders and DVD players to automotive
electronics and displays to telecommunication switches to
high-performance computing systems. As its name suggests,
this small, low-power device is a highly reconfigurable,
extensible functional element in the design of those products.
Because of its widespread use the FPGA also enjoys a very
robust technology curve, with projected five-year rates of
price/performance enhancements that exceed those predicted
for CPU technology by Moore’s Law. The FPGAs are
customizable at run-time to optimize their behavior for a
particular snippet (program that is executed on an SPU). The
use of FPGA close to the storage enables one to achieve
two to three magnitudes of performance improvement on real
applications in the areas of business intelligence analytics,
bibliographical couplings, graph searches for sub-circuit
motifs within integrated circuit netlists, and new word sense
disambiguation approaches in natural language processing
[4]. NPS has been applied to analysis of relationships in large
data sets coming from heterogeneous data sources, a problem
which proved intractable for traditional cluster hardware [3].

II. METHODS

A. Cluster Approach

In order to parallelize this computation for a cluster, we
leveraged a set of routines developed by several of the authors
(Delmerico, Jones, Gallo) for working with large data sets.
This software consists of several standalone applications as
well as bindings for the R Statistical Computing Package
which allow for the manipulation and analysis of large
data sets which exceed the memory resources of the user.
The standalone applications accept a text-based data set, in



this case the output of a microarray experiment, generate
the correlation matrix, and then decompose it into smaller
submatrices in order to manually “stripe” the data out over a
storage array. These two steps are distinct in order to retain
versatility for working with any large data set, not just our
microarray correlation data. Lastly, a query routine scans
the decomposed data and returns the values with the largest
correlation. All of these steps are performed in parallel, with
the work being divided into blocks of rows for each processor.

So for an N × N correlation matrix, each of the P
processes computes the correlation of N

P gene locations with
all of the others, producing an N

P × N submatrix, the union
of which contains all of the row-wise correlation values.
Then each process decomposes its correlation submatrix
into smaller submatrices and writes them out to disk. For a
two-dimensional array of data, a block-cyclic decomposition
is used. The user can specify the size of the tiles in order
to optimize the performance for the system on which it is
run. The output of the decomposition program is a group of
files, each storing an individual tile from the decomposition,
which are archived on disk so that they may subsequently
be analyzed. During the decomposition, the dimensions
and coordinates of each tile within the decomposition are
calculated and output to a user and machine-readable file of
meta-data. This file is later used during retrieval of the stored
data. By decomposing this correlation matrix into many
smaller, more tractable submatrices, and storing the meta-data
about the decomposition, subsets of the entire matrix can be
loaded into memory and analyzed or scanned individually.
For the decomposition, which consists almost exclusively of
I/O operations, the user can specify a buffer size which the
program uses to aggregate reads and writes into a few large
operations, rather than many smaller ones. This approach has
been shown to provide increased performance in I/O-bound
applications [13]. Lastly, each process scans the submatrix
files from its portion of the overall matrix for the largest
values, identifying the most correlated gene locations.

B. Hadoop Approach

The Microarray Correlation data set can be broken down
into smaller independent sub-matrices for processing which
makes it a good candidate for the MapReduce framework [14].
The implementation takes an N × M matrix of microarray
sample data as input and subdivides the matrix row-wise
based on the number of Map tasks. Each Map task processes
a set of rows in the matrix generating the resulting N × N
correlation matrix. Interestingly, this particular application
contradicts a general assumption of the MapReduce model
where it’s assumed the output of Reduce is smaller than the
input of the Map [20]. In the case of loading the Microarray
Correlation data, the output of Reduce is the generated
correlation matrix which is an order of magnitude larger than
the input matrix passed to the Map.

The input matrix is represented as a binary file of 8-

Fig. 5. Generation and Query times for Hadoop on the cluster

byte double values. The width and height of the matrix are
also given as input. A pre-processing step first generates a
temporary matrix by calculating, for each row, the deviation
from the mean for each entry in the row. The temporary matrix
is then written to the HDFS using Java’s DataOutputStream
for serializing primitive values. This file is then added
to Hadoop’s DistributedCache facility to ensure that the
temp matrix file is copied to each node locally before the
Map task is initiated. Prior to each Map tasks execution, a
setup function is called which reads the temp matrix file
from the DistributedCache and loads it into memory for
use in computing the rows of the correlation matrix. The
Mapper function is setup to receive an integer (ith row of
the temporary matrix) as the key and Null for a value.
There’s no need to pass a value to the Map function as the
temporary matrix has already been loaded into memory and
contains all the necessary data for the computation. The
Mapper function then computes the ith row of the correlation
matrix collecting the output into a key/value pair where
the key is an integer (ith row) and value is an array of
doubles. No further reduction is needed in the Reducer step
so the Identity Reducer is used to simply write the input
key/value pair directly to the output. The output is written
to a set of Hadoop SequenceFiles, one file per Map task.
A SequenceFile is a flat file consisting of binary key/value
pairs and is used extensively throughout the MapReduce
framework for exchanging data between the Map and Reduce
phases [19]. An example SequenceFile is of the format:

Key Value
[row index] [double double ... n]

Pseudo code:
LoadMatrixMapJob:

function setup():
matrix[][] = load temp matrix from DistributedCache

function map(int row, null):
vector = double[]



Fig. 6. Generation time for NPS by input size

Fig. 7. Generation time for NPS by output size

for i = 0; i matrix.length; i++ do
for j = 0; j matrix[i].length; j++ do

vector[i] = matrix[row][j] * matrix[i][j];
end for

end for
vector[row] = 1.0

output(row, vector)

To query for the top N values of the correlation matrix
a Mapper, Combiner, and Reducer are implemented. Each
Mapper task processes X rows of the correlation matrix
collecting the top N values for each row. The output of the
Mapper is a custom class encapsulating an entry, (i, j), and
a value in the correlation matrix. The Combiner collects the
top N values of the Mapper output passing the values off to
a single Reducer task. The Reducer then computes the top N
values of the output of the Combiner tasks writing the results
to a file. The number of map tasks for the generation was set
to equal the number of processors in the cluster (or 2 times
the number of nodes). For searching the top N values, the
number of map tasks was set to roughly the file size of the
correction matrix divided by the HDFS block size, which was

Fig. 8. Scalability by number of columns in the input data

Fig. 9. Scaling of NPS systems of different sizes relative to single cabinet
(108 SPU) performance.

set to 128MB.

C. Netezza Approach

As the Netezza system is a database system, we were able
to simplify the solution to the microarray gene correlation
problem to a set of SQL statements (queries) and a load of

Fig. 10. Performance of Hadoop on 244k data set for several replication
factors.



the data into the database. We generated synthetic data sets
consisting of three columns of data: integer row and column
indices and a random double precision floating point number.
The integers represented the gene and sample numbers. In the
case of the real data set, it was converted to the same three
column format for standardization’s sake. For example if
there were 19,000 genes and 43 samples, the data file would
have 19,000 x 43 = 817,000 records.

Once the original data was loaded into the database on
the NPS 10400 system, three steps were performed:

1) Convert the 3 column table into a table with number of
samples + 1 columns.

2) Compute the Standard deviation and mean for each row,
and in the same step, calculate the difference from mean
for each column and store the results in a temporary
table.

3) Compute the Cartesian product of the temporary table
with the restriction that the gene of the first reference is
not equal to that of the second reference, or where the
gene of the first reference is less than that of the second.

The output of this process is another database table with three
columns: gene A, gene B, and the correlation. The final step
in the testing process was to run an “interrogation” query
against the result sets. The query chosen returned the 200
most correlated genes from the result sets. Any subsequent
querying of the result set could be performed on an ad-hoc
basis using SQL. The Netezza approach was implemented in
less than a week by a single individual.

Brief Process Description:
1) Create raw data table with the columns of gene id,

sample id, value.
2) Convert data into loadable format, or generate simulation

data (ASCII text which matches raw data table structure)
3) Load data using Netezza Load Utility
4) Create a wide table with one row per gene, and one

column per sample.
5) Create a work table that stores the sdev, mean, and

variance from mean over each column, for each row.
6) Compute the correlation of every row to every other row

in the work table through the use of a cross product SQL
join of the work table with itself. The cross product was
restricted with one of two conditions, the first ensured
that we did not calculate the correlation of X to X, and
the second to not compute the correlation of both X and
Y and that of Y and X.

7) Query the 200 most correlated gene-gene sets from
the result set as an example of result interrogation
performance.

III. RESULTS

The following performance tests were performed on the U2
cluster at the University at Buffalo’s Center for Computational
Research and on a Netezza NPS 10400 appliance. The U2

Fig. 11. Selected generation times by input size

Fig. 12. Selected query times by input size

cluster consists of 1056 Dell PowerEdge SC1425 Servers,
each with two Intel Xeon “Irwindale” processors at either
3.2 GHz or 3.0 GHz. Most of these nodes are equipped with
2 GB of local high speed memory, but several racks have 4
GB, and one rack has 8 GB. Each node has an 80 GB local
disk and is connected to the rest of the cluster with either
Gigabit Ethernet or both Gigabit Ethernet and Myrinet 2G.
Of U2’s two globally accessible NFS mounted storage arrays,
one has roughly 2 TB of scratch space from a storage array
network (SAN), while the other has approximately 25 TB of
scratch space running an IBRIX parallel file system. Both
the SAN and IBRIX scratch spaces were used during the
cluster experiments, and the local disks for the participating
nodes were used for the Hadoop runs as part of the HDFS
distributed file system.

The Netezza NPS 10400 machine consists of four racks
with 112 snippet processing units (SPUs) each, for a total
of 448. However, 16 of the SPUs are used as “hot spares”,
so only 432 SPUs are applied to computations. Each SPU
contains a 400 GB disk mated with an FPGA and a PowerPC
chip, with the whole system capable of storing and operating
on 50 TB of user data. All trials with the NPS 10400



were conducted using the entire machine for all database
operations. The FPGA in each SPU only decompressed the
data stored on disk as it was read; all other computation
was performed by the CPUs on the SPUs. This application
ran entirely on the SPUs, with the host only involved in the
initial data load, and the management of the work on the SPUs.

In order to understand the implications of the following
results, we must consider the differences in hardware between
the cluster and NPS. After running some CPU benchmarks
on both systems, we have determined that each core in one of
our dual-core cluster nodes has 2.56 times the computational
power of one NPS SPU. Therefore, the entire NPS 10400
system with 432 SPUs is equivalent to (432 SPUs * 1 cluster
core/2.56 SPUs) ≈ 168 cores = 84 cluster nodes. Thus, 128
nodes of our cluster have roughly 1.5x the computational
power of the NPS system on which we performed our tests,
and the NPS falls between our 64 and 128 node cluster runs.
Additionally, identical correlation tests were performed on
NPS systems of several sizes: 1, 2, 4, and 6 racks of 108
SPUs each. The speedup relative to the single-rack system
is illustrated in Fig. 9. Clearly, the performance of the NPS
system scales in a nearly linear way with its size for both
generation and query portions of the correlation tests.

Although the specifics of each implementation differ,
they all followed the same high-level workflow: compute the
correlation matrix, then decompose the matrix into smaller
submatrices and archive on disk, then query the distributed
data set for extreme values. For each data set, once the
correlation matrix was computed, a query was performed
to return the 200 most highly correlated results. In addition
to the real-world data set of 19,116 gene locations with
43 samples at each, data sets of the following sizes were
synthetically produced for both the cluster and the NPS.
These sizes were chosen partially to provide estimates of
scalability for both the number of gene locations and the
number of samples at each, but also to approximate the data
set sizes that would be produced from actual microarray
experiments.

19,116 x 80, 120 80,000 x 43, 80, 120
40,000 x 43, 80, 120 120,000 x 43, 80, 120

The Hadoop trials included 19k, 40k, 80k, and 120k data sets
for all processor counts, and 244k and 1M data sets for those
in which the distributed file system had enough capacity. The
generation times for trials on the cluster are shown in Fig. 3,
for Hadoop in Fig. 5, and for the NPS in Figs. 6 7. The query
times for the cluster can be found in Fig. 3, for Hadoop in
Fig. 5, and for the NPS in the following table:

Data Set Query Time (sec.)
19k < 1
40k 1
80k 3

120k 7
244k 25
1M 489

Some additional generation times for Hadoop runs of various
node counts and the NPS data sets beyond the capacity of the
shared cluster storage are listed below (in seconds):

Hadoop
Data Set N=16 N=32 N=64 N=128

244k x 43 979 439 230 150
1M x 43 3765

NPS
Data Set Time(sec.)

244k x 43 1279
244k x 80 1400
244k x 120 1970

1M x 43 20343
1M x 80 22579

Although Hadoop offers many user-accessible parameters, the
replication factor of the file system (dfs.replication) was of
particular interest to us for its potential impact on performance.
The default setting for this parameter is 3, meaning that
three copies of all data would be distributed around the file
system. For many applications where data would be resident
on the file system for the long term, this level of redundancy
may be necessary to prevent loss of data in the event of
failures. However, since the volume of data of interest is small
compared to the entire set of correlation values, and can easily
and relatively quickly be re-computed, we are assuming that
our data will be resident for only the short term; long enough
to perform analysis and extract pertinent values. Therefore, our
Hadoop trials were conducted with a replication factor of 1.
However, the effect of the replication factor on performance
remained of interest, so we performed further trials with a
244k data set to determine that relationship. In Fig. 10, the
replication factor has little effect on the query portion but a
more dramatic effect on generation. For larger node counts, it
appears that the replication factor has a smaller impact on the
performance at either task; to the point that it even improves
the query performance slightly for 128 nodes. There is no clear
tradeoff of larger generation times for smaller query times
with greater replication. Thus the level of replication would
likely be a decision for the end-user to make strictly based
on a desired level of fault tolerance. Another parameter of
interest was the number of map tasks, where a larger value may
allow Hadoop to load-balance more effectively and recover
more quickly from failures. However, further tests with a
variable number of map tasks indicated that neither robustness
nor performance was gained from increasing the cardinality
beyond the number of processors in the job.



Fig. 13. Comparison of generation times across all implementations. Cluster
and Hadoop times are relative to number of nodes, NPS times are for entire
machine.

Fig. 14. Comparison of query times across all implementations. Cluster
and Hadoop times are relative to number of nodes, NPS times are for entire
machine.

IV. ANALYSIS

It should be noted that the performance data for the cluster
trials, specifically using the SAN for storage, represent a
“best case scenario”; without a parallel file system, the time
for I/O operations is heavily dependent on network traffic
in and out of the storage array, so each trial was repeated
multiple times and the lowest time selected. Any subsequent
analyses comparing other implementations to these data
should be regarded as a low estimate on the improvement in
performance that one might attain.

In Fig. 4, we can see that the SAN trials are limited to
single-digit speedups for all but the smallest data sets, and
exhibit almost no improvement beyond 32 processes for either
task. In contrast, the data from IBRIX scales almost linearly
to 16 or 32 processes, but the performance either plateaus
(for larger data sets) or drops off (smaller sets). However,
for querying the 120k set, it continues to scale up to 128
nodes, but at only 30% efficiency. By contrast, the Hadoop
implementation scales very well out to 128 nodes for larger

problem sizes (Fig. 5). There appears to be some overhead
for Hadoop which prevents additional performance gains for
smaller data sets with large node counts, but even at these
sizes, the Hadoop implementation still outperforms the others
for generation (Fig. 13). The generation step scales very well
on the the Netezza architecture (Figs. 6 and 7), although
there is some overhead here as well for smaller data sets.
The generation times for the largest data sets and the query
performance from the tables in the previous section further
indicate the excellent scalability on the NPS with respect to
the size of the input data.

The overhead mentioned previously for generating the
correlation matrix for small data sets on the NPS is more
evident in Fig. 8, but for larger data sets, and for the
other implementations, scaling with respect to the number
of samples is fairly linear. In fact, since each sample
represents a separate microarray experiment, possibly with
a distinct patient, we would expect that for most analyses,
Nsamples � Ngenes, and thus scaling in this dimension would
likely be less of a concern than for the number of genes. In
that respect, though, the computation time also appears to
scale very well (Fig. 11). For a fixed number of processes
in the cluster and Hadoop implementations, as well as with
the NPS, the scaling for generating the correlation matrix
appears to be the expected O

(
N2

genes

)
. For the I/O-bound

query portion, the scaling is not so uniform (Fig. 12). In
this case, for implementations using the cluster, the parallel
IBRIX file system and Hadoop both scaled well, much better
than the SAN, but the NPS performs dramatically better than
all of them at this task.

Considering the scalability of all four implementations
relative to processor count (Fig. 13), the failure of both
cluster variations to scale beyond about 32 nodes prevents
them from competing well with either Hadoop or the NPS
at the generation step. When leveraging at least 64 nodes,
the Hadoop implementation is able to match or outperform
the NPS for all input sizes. For the query portion of the
trials, however, Netezza’s active disk architecture clearly
outperforms all of the implementations using the cluster
resources, often by several orders of magnitude (Fig. 14).
There appears to be some overhead here for the Hadoop
version; despite its scalability, it requires considerably more
time to return the top results than both cluster versions for
small data sets.

Using the performance of the cluster implementation
with the SAN as a baseline, Fig. 15 illustrates the relative
speedup of the other implementations. For the cluster-based
approaches, the comparison is made to the SAN data for the
same number of processes or nodes. Since the NPS works
as a single unit, the comparisons in that case are between
the whole machine (432 SPUs) and the cluster trials with
the various node counts. For all data sizes, the parallel file
system adds some additional performance to the cluster



Fig. 15. Performance speedup relative to cluster generation trial with SAN,
using same number of processes/nodes. In the case of the NPS, performance is
for the whole machine (432 SPUs) relative to a variable number of processes
for the cluster trials.

Fig. 16. Performance speedup relative to cluster query trial with SAN, using
same number of processes/nodes.

implementation, but only marginally so. For small processor
counts, the NPS performs at least an order of magnitude
better than the cluster, but this performance is fixed, so
the relative advantage decreases when compared to larger
numbers of cluster nodes. However, because of the excellent
scalability of the Hadoop implementation, its relative speedup
grows with processor count, and ultimately outperforms all
of the other versions at the generation task. As in Fig. 15,
performance for the query task is displayed in Figs. 16 17
relative to the cluster with SAN. Here, although the IBRIX
and Hadoop implementations add modest performance gains,
clearly Netezza dominates. The NPS achieves a maximum
speedup of 340x over one processor on an 80k data set, but
also is able to maintain superior performance as the number
of cluster nodes increases. The NPS exhibits 84x, 145x, and
94x speedups over 128-node queries on 40k, 80k, and 120k
data sets, respectively.

Fig. 17. Performance speedup relative to cluster query trial with SAN. Entire
NPS machine (432 SPUs) compared to a variable number of processes for
the cluster trials.

V. CONCLUSIONS

We have explored four implementations of an application
intended to enable correlation analysis of microarray
data, the volume of which is rendering it intractable on
all but high-performance clusters and specialized hardware.
Although the cluster versions demonstrate that this application
can be implemented on more conventional hardware, the
performance is lacking precisely because a cluster is designed
for general-purpose computing. However, by leveraging the
Hadoop distributed computing model, and its corresponding
distributed file system, the hardware resources available in
a cluster can be made to scale much better when applied
to this type of data-centric application. Although Hadoop is
able to work within the limitations of the cluster architecture
to enable this scalability, a specialized machine such as the
Netezza NPS is able to tackle these problems and scale them
up beyond the capabilities of a cluster, and the performance
can be significantly better, even for smaller problems.

In general, all four implementations scaled well in terms of
the size of the input data set, both with the number of gene
locations, and the number of samples at each. However, with
the cluster implementations using shared storage resources,
the input data sizes which can be operated on are limited
by the resources available. The Hadoop implementation
requires dedicated nodes in order to set up the distributed
file system, and the storage resources are limited by the
size of the local disks, but the performance benefits are
significant, and with enough nodes, even large data sets can
be computed. With 50 TB of storage capacity, the Netezza
NPS 10400 offered no restrictions on the data set sizes which
could be used as input within available microarray resolutions.

In terms of scalability and realistic performance, both
Hadoop and Netezza display obvious benefits over the cluster
implementations when working with very large data sets.
Depending on the user’s needs, as well as current and



prospective computing infrastructure, either one could offer
the appropriate solution for performing these analyses of
microarray data. Additionally, the development time also
favors these two approaches; the cluster software took several
months to develop from scratch and refine, while both the
Hadoop and Netezza implementations each required only
about a week of development and approximately two weeks
to run our full complement of performance tests. The Hadoop
implementation scales well for both tasks in this application,
and performs the best in generating the correlation matrix.
Although Hadoop did not perform the query portion as
quickly as the NPS for the trials we attempted, and for some
data sets, slower than the other cluster implementations, the
scalability further indicate that this approach is still viable for
queries and has the possibility of performing even better for
larger node counts. Given a set of cluster resources, Hadoop
is the best option for performing this analysis since it is
a free software framework and can be easily implemented
on the existing hardware. On the other hand, the NPS lags
a bit in the generation step, but dominates in performing
queries. These performance gains derive from the Active Disk
architecture of the NPS, and for those users who can acquire
a piece of specialized hardware such as this, the gains over a
cluster can be dramatic as we have seen here. For those users
with the need for specialized or additional hardware in order
to perform this analysis, the Netezza NPS system may be the
right solution.

Our goal in this work, while initially focused on comparing
Netezza architecture with clusters, is not limited to Netezza
hardware. Instead, the comparison sheds light on potential
performance on the more generalized Active Disk architecture.
Data-centric hardware systems have previously been proposed
in the literature [5, 6]. They span a range of uses, from
low power, minimal compute performance nodes [5], to
more typical commodity rack-based systems [6]. Data-centric
applications such as this have the potential to drive the
development of this new computing paradigm forward, while
simultaneously reaping the rewards of improved performance
and extended capabilities in its application to the problem.
These microarray correlation computations are but one
of many data-centric applications that could be further
enabled and expanded by a shift towards hardware which
accommodates them.
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