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Perception-aware Path Planning

Gabriele Costante Christian Forster Jeffrey Delmerico Paolo Valigi Davide Scaramuzza

Abstract—In this paper, we give a double twist to the problem
of planning under uncertainty. State-of-the-art planners seek
to minimize the localization uncertainty by only considering
the geometric structure of the scene. In this paper, we argue
that motion planning for vision-controlled robots should be
perception aware in that the robot should also favor texture-rich
areas to minimize the localization uncertainty during a goal-
reaching task. Thus, we describe how to optimally incorporate the
photometric information (i.e., texture) of the scene, in addition to
the the geometric one, to compute the uncertainty of vision-based
localization during path planning. To avoid the caveats of feature-
based localization systems (i.e., dependence on feature type and
user-defined thresholds), we use dense, direct methods. This allows
us to compute the localization uncertainty directly from the
intensity values of every pixel in the image. We also describe how
to compute trajectories online, considering also scenarios with
no prior knowledge about the map. The proposed framework is
general and can easily be adapted to different robotic platforms
and scenarios. The effectiveness of our approach is demonstrated
with extensive experiments in both simulated and real-world
environments using a vision-controlled micro aerial vehicle.

I. INTRODUCTION

Most of the literature on robot vision has focused on the

problem of passive localization and mapping from a predefined

set of view points—also known as visual odometry or SLAM

[1]—where impressive results have been demonstrated over

the last decade [2, 3, 4, 5]. Minor work has instead tackled

the problem of how to actively control the perception pipeline

in order to improve the performance of a given task [6, 7].

In this paper, we address the problem of how to optimally

leverage vision in a goal-reaching task to select trajecto-

ries with minimum localization accuracy. State-of-the-art path

planners seek to minimize the localization uncertainty by only

considering the geometric structure of the scene. However,

for vision-controlled robots it is crucial to also consider the

photometric appearance (i.e., texture) of the environment when

designing reliable trajectories (cf. Figure 1).

The basic observation is that the uncertainty of vision-based

localization is strongly affected by the photometric appearance

of the observed scene (cf. Figure 2). Thus, highly-textured

areas should be preferred to locations with poor photometric

information when planning reliable trajectories (i.e., with low

localization uncertainty). Driven by this observation, we aim

to answer the following question: What is the trajectory that

minimizes the camera pose-estimation uncertainty in a robot-

navigation task? In practice, the best trajectory depends on

different factors: (i) the current robot pose and uncertainty, (ii)

the geometry of the scene, and (iii) the photometric appearance

G. Costante and P. Valigi are with the Department of Engineering, Univer-
sity of Perugia, Italy.

C. Forster, J. Delmerico, and D. Scaramuzza are with the Robotics and
Perception Group, University of Zurich, Switzerland.

(a) (b) (c)

Fig. 1: Online perception-aware path planning: An initial plan is
computed without prior knowledge about the environment (a). The
plan is then updated as new obstacles (b) or new textured areas (c)
are discovered. Although the new trajectory (c) is longer than the one
in (b), it contains more photometric information and, thus, is optimal
with respect to the pose localization uncertainty.

(a) (b)

Fig. 2: (a) A scene and (b) its localization uncertainty (notably, the
trace of the covariance matrix) for a downward-looking camera at a
given height. The localization uncertainty is visualized as a heat-map
(blue means high uncertainty, red means low).

of the scene. Based on the these considerations, we describe

how to incorporate the photometric information, in addition to

the the geometric one, to compute the uncertainty of vision-

based localization during path planning. The best trajectory

can then be computed as a function of the robot’s current

pose and the expected pose-uncertainty reduction due to the

predicted 3D structure and photometric appearance of the

scene (see Figure 1).

Since we want to handle scenarios with no prior knowledge

about the map, we also present an online adaptation of the

proposed framework. In particular, we update the plan as

the robot explores the scene, adapting the perception-aware

trajectory as new photometric information becomes available.

II. RELATED WORK

A. Planning in Information Space

The selection of trajectories that minimize the localization

uncertainty is often referred to as “Planning under Uncer-

tainty” or “Planning in Information Space”. This problem
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has generally been solved with Partially Observable Markov

Decision Processes (POMDPs) or through graph-search in the

belief space [8]. While these approaches are well-established,

in general their computational complexity grows exponen-

tially in the number of possible actions and observations. To

overcome this issues, Rapidly-exploring Random Tree (RRT*)

[9] were introduced to perform fast trajectory computation

and guarantee asymptotic optimality. Furthermore, Rapidly-

exploring Random Belief Trees (RRBTs) were proposed by

[10] as an extension of the RRT* framework to take into

account the pose uncertainty. However, while the RRBTs

are well-suited for energy minimization tasks, in this work,

we specifically focus on selecting trajectories that maximize

the visual information without considering robot dynamics

or control efforts. Thus, we choose to extend the RRT*

framework to take into account also the pose uncertainty when

computing optimal trajectories.

B. Active Perception

When perception is incorporated into the path planning pro-

cess, the problem of selecting optimal viewpoints to maximize

the performance of a given task is referred to as active percep-

tion [6, 11, 12, 13, 14]. One of the goals of active perception

is active localization, which seeks to compute control actions

and trajectories that minimize the pose estimation uncertainty.

Most active localization works have been in the context of

robot SLAM or exploration. Depending on the sensor used,

they can be classified into range-based [15, 16, 17] or vision-

based [18, 19, 20, 21, 22].

While range sensors only perceive the geometric structure of

the environment, vision sensors are more informative because

they can capture both the geometry and appearance of a scene.

Davison and Murray [18] were the first to take into account

the effects of actions during visual SLAM. The goal was to

select a fixation-point of a moving stereo head attached to a

mobile robot in order to minimize the motion drift along a

predefined trajectory. Vidal Calleja et al. [19] demonstrated

an active feature-based visual SLAM framework that provides

realtime user-feedback to minimize both map and camera pose

uncertainty. Bryson and Sukkarieh [23] demonstrated a similar

visual and inertial EKF-SLAM formulation for active control

of flying vehicles. The goal was to cover a predefined area with

a camera while maintaining an accurate estimation of both the

map and the vehicle state. Extensive simulation results were

provided of a MAV that is restricted to fly on a plane. Mostegel

et al. [20] proposed a set of criteria to estimate the influence

of camera motion on the stability of visual localization for

MAVs.

The minimization of the pose covariance in vision-based

path-planning systems was addressed in [21] and [22]. Achte-

lik et al. [22] used RRBTs to evaluate offline multiple path

hypotheses in a known map and select paths with minimum

pose uncertainty while at the same time considering the vehicle

dynamics. They computed the pose covariance directly from

bundle adjustment, by minimizing the reprojection errors of

the 3D map points across all images. The approach was

demonstrated on a MAV. Sadat et al. [21] proposed a strategy

to plan trajectories for MAVs, which prefers paths rich of

visual features. A viewpoint score based on the number of

observed features was used to measure the quality of localiza-

tion. The system used RRT* to iteratively re-plan as the robot

explored the environment. As a fixed part of the previous plan

is executed, RRT* is recomputed from scratch.

C. Feature-based vs Dense, Direct Methods

All vision-based works previously mentioned represent the

scene as a set of sparse 3D landmarks corresponding to dis-

criminative features in the observed images (e.g., SIFT, SURF,

etc.) and estimate structure and motion through reprojection-

error minimization. A reason for the success of these methods

is the availability of robust feature detectors and descriptors

that allow matching images with large disparity. The disad-

vantage of feature-based approaches is the dependence on the

feature type, the reliance on numerous detection and matching

thresholds, the necessity for robust estimation techniques to

deal with incorrect correspondences (e.g., RANSAC), and the

fact that most feature detectors are optimized for speed rather

than precision.

The alternative to feature-based methods is to use dense,

direct methods [24]. Direct methods have the advantage that

they estimate structure and motion directly by minimizing

an error measure (called photometric error) that is based

on images pixel-level intensities. The local intensity gradient

magnitude and direction is used in the optimization compared

to feature-based methods that only consider the distance to a

feature-location. Pixel correspondence is given directly by the

geometry of the problem, eliminating the need for robust data

association techniques. Direct methods are said dense if they

exploit the visual information even from areas where gradients

are small (i.e., not just edges). Dense, direct methods have

been shown to outperform feature-based methods in terms of

robustness in scenes with little texture [25] or in the case

of camera defocus and motion blur [26, 27]. Using dense,

direct methods, the 6-DoF pose of a camera can be recovered

by dense image-to-model alignment, which is the process of

aligning the observed image to a view synthesized from the

estimated 3D map through photometric error minimization.

The first approach taking advantage of dense, direct methods

in the context of active perception was proposed by Forster

et al. [28]. However, the task was specified in terms of

maximizing the quality of the map (i.e., minimizing the map

uncertainty). Thus, the robot localization uncertainty was not

considered. Additionally, path planning from a start to a goal

point was not investigated. Conversely, in this paper we are

interested in computing trajectories towards a predefined goal

while minimizing the robot pose uncertainty along the path.

In contrast to previous works based on sparse features, we use

dense, direct methods.

D. Contributions

Our contributions are:

• An online perception-aware path planning framework

that computes the best path towards a predefined goal
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through the exploitation of both the geometric and pho-

tometric information (i.e., texture) of the scene. To the

best of our knowledge, this is the first attempt to use the

photometric appearance in addition to the geometric 3D

structure for planning under uncertainty.

• We use dense, direct methods to compute the photometric

information gain directly from the intensity values of ev-

ery pixel in the image. This avoids the caveats of feature-

based localization systems, such as the dependence on the

type of feature detector and descriptor and the reliance

on user-defined thresholds for detection and matching.

• We integrate the Lie Group-based propagation proposed

in [29] and we extend the Rapidly-exploring Random

Tree (RRT*) [9] framework to take into account the pose

uncertainty when computing trajectories.

• We implement and demonstrate the effectiveness of our

approach on an actual vision-based quadrotor performing

vision-based localization, dense 3D reconstruction, and

online perception-aware planning.

E. Outline

The outline of the paper is as follows: in Section III, we

introduce the Lie-Group–based propagation framework and

describe how the pose uncertainties are propagated along the

trajectory. Section III-C describes the dense image-to-model

alignment strategy to compute the photometric information

gain in terms of the scene texture. In Section IV, we adapt

the RRT* framework to generate trajectories that minimize

the camera pose uncertainty given the photometric information

computed along the path. In Section V, we present the experi-

mental evaluation. Finally, in Section VI we draw conclusions

and highlight possible future improvements.

III. LIE GROUP BASED UNCERTAINTY PROPAGATION

Different trajectories lead to different evolutions of pose

covariance. For this reason, it is crucial to predict how the

pose uncertainty will be affected given a candidate route. To

achieve this, we need a state representation to propagate the

pose estimate, together with its uncertainty, when executing a

predefined trajectory.

When choosing a state representation, most challenges arise

because the rotation parametrizations have either singularities

or constraints. This is related to the fact that rotation variables

are not vectors but members of a non-commutative group,

i.e., the Lie group SO(3). As a consequence, using a first-

order approximation to propagate the covariance matrix (e.g.,

in standard EKFs) does not guarantee a good estimate of

the uncertainty. Conversely, Monte Carlo techniques are more

reliable, but the computational effort required to reach a

realistic estimate is often unacceptable. We can achieve both a

robust and an efficient representation if we preserve the nature

of the rotation matrices, i.e., we represent the robot poses as

Lie group members.

A. Associating Uncertainty to Rigid Body Motions

First of all, we provide some assumptions and preliminary

notations that we use in our formulations in the following

sections.

We represent the pose of the robot as a 6 Degree of

Freedom (DoF) transformation matrix T, member of the

special Euclidean group in R
3, which is defined as follows:

SE(3) :=

{

T =

[

C r

0T 1

] ∣

∣

∣

∣

C ∈ SO(3), r ∈ R
3

}

, (1)

where

SO(3) :=
{

C ∈ R
3×3

∣

∣ CCT = 1, detC = 1
}

(2)

is the special orthogonal group in R
3 (the set of spatial

rotations) and 1 is the 3× 3 identity matrix.

In the following, the Lie Algebra associated to the SE(3)
Lie Group is referred as se(3). To represent the uncertainty of

the robot pose, we use the formulation proposed in [29]. We

define a random variable for SE(3) members according to:

T := exp(ξ∧)T̄ (3)

In this definition, T̄ is a noise-free value that represents the

mean of the pose, while ξ ∈ R
6 is a small perturbation in the

tangent space that we assume to be normally distributed with

zero mean and covariance Σ. We make use of the ∧ operator

to map ξ to a member of the Lie algebra se(3) using:

ξ∧ :=

[

ρ

φ

]

=

[

φ∧ ρ

0T 0

]

, (4)

where φ is a member of the Lie algebra so(3):

φ∧ :=





φ1

φ2

φ3





∧

=





0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0



 (5)

Observe that the operator ∧ is ’overloaded’ and can be applied

to both 6×1 and 3×1 vectors [29, 30]. They are disambiguated

by the context.

Furthermore, we indicate with Tk,w the robot pose at

time k relative to the world frame w and with Tk+1,k the

transformation between the pose at time k and k + 1.

B. Pose Propagation

Properly modeling the uncertainty propagation according to

the IMU odometry model would require the extension of the

robot state vector with the instantaneous velocity. However, to

reduce the problem complexity, we assume in the following

that the velocity remains constant and, thus, the odometry

uncertainty, denoted by Σk+1,k, associated to all motions

Tk+1,k, is fixed.

Given the transformation Tk+1,k, we reason about the

propagation of the mean and the covariance of the resulting

pose Tk+1,w. Assuming no correlation between the current

pose and the transformation between k and k + 1, we can

consider Tk,w and Tk+1,k as represented by their means and

covariances:

{T̄k,w,Σk,w}, {T̄k+1,k,Σk+1,k}. (6)
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(a) (b)

Fig. 3: Examples of propagation using the fourth-order Lie
group framework. The two columns show two different propaga-
tion tests. In 3(a), the covariance is propagated after 100 mo-
tions of 1 meter along the x axis, with a motion uncertainty of
Σk+1,k = diag(0, 0, 0, 0, 0, 0.03). In 3(b), we perform 100 motions
((1.0, 0.0, 0.1) meters) starting from the pose (0, 0, 0, 0, 0, π/8),
and with Σk+1,k = diag(0.01, 0.01, 0.01, 0.001, 0.001, 0.03). The
covariances are depicted as point clouds, sampling the distributions
every 10 motions.

Combining them, we get

Tk+1,w = Tk,w Tk+1,k. (7)

To compute the mean and the covariance of the compound

pose, we use the results from [29]. The mean is

T̄k+1,w = T̄k,w T̄k+1,k, (8)

and the covariance, approximated to fourth order, is

Σk+1,w ⋍ Σk,w + T Σk+1,kT
⊤ + F (9)

where T is Ad(T̄k,w), i.e., the adjoint operator for SE(3),
and F encodes the fourth-order terms. Equations (8) and (9),

we can propagate the uncertainty along a nominal trajectory.

Figure 3 depicts examples of covariance propagations.

C. Measurement Update

In this section, we describe the computation of the photo-

metric information associated to a measurement at a particular

viewpoint in order to update the predicted pose uncertainty.

The measurement process defines the information that can

be obtained from images, hence, we summarize it in the

following. In contrast to previous works based on sparse

keypoints, we use a dense image-to-model alignment approach

for the measurement update, which uses the intensity and

depth of every pixel in the image.

1) Preliminary Notation: At each iteration of the navigation

process, we can compute a dense surface model S ∈ R
3×R

+

(3D position and grayscale intensity) relative to the explored

part of the scene (see Figure 5(a)). The rendered synthetic

image is denoted with Is : Ωs ⊂ R
2 → R

+, where Ωs is the

image domain and u = (u, v)T ∈ Ωs are pixel coordinates.

Furthermore, we refer to the depthmap Ds, associated to an

image Is, as the matrix containing the distance at every pixel

to the surface of the scene:

Ds : Ωs → R
+; u 7→ du, (10)

where du is the depth associated to u. Note that, since we

need to predict the uncertainty propagation during the planning

phase, the actual image at a given location is not available at

Fig. 4: Illustration of the dense image-to-model alignment used in

the measurement update. Given an estimate of the pose T̂k,w, we can
synthesize an image and depthmap {Ik,Dk} from the 3D model S.
The best update ξ of the pose estimate is computed by minimizing
the intensity difference of corresponding pixels {u,u′}.

the beginning. As a consequence, we synthesize the predicted

image for each waypoint selected using the reconstructed map

and we update the pose uncertainty estimates accordingly.

A 3D point p = (x, y, z)T in the camera reference frame

is mapped to the corresponding pixel in the image u through

the camera projection model π : R3 → R
2

u = π(p). (11)

On the other hand, we can recover the 3D point associated to

the pixel u using the inverse projection function π−1 and the

depth du:

pu = π−1(u, du). (12)

Note that the projection function π is determined by the

intrinsic camera parameters that are known from calibration.

Finally, a rigid body transformation T ∈ SE(3) rotates and

translates a point q as follows:

q′(T) := (1 |0)T (qT , 1)T . (13)

2) Dense Image-to-Model Alignment: Given the dense 3D

model of the environment we can synthesize an image and

the relative depthmap Is, Ds at the estimated pose of the

camera Tk,w. To refine the current pose estimate T̂k,w, of the

frame k with respect to the global world frame w, we use

dense image-to-model alignment [26, 31] (see Figure 4). This

approach determines the incremental updates ξ to the current

pose estimate by minimizing the photometric error between

the observed image and the synthetic one. Once converged,

this approach also provides the uncertainty of the alignment

through evaluation of the Fisher Information Matrix, which

is used in our approach to select informative trajectories. The

image residual ru for a pixel u is the difference of the intensity

value at pixel u in the real image acquired at time step k

and the intensity value in the synthetic image rendered at the

estimated position T̂k,w:

ru = Ik(u)− Is(π(p
′
u(T̂k,w))) (14)

The residual is assumed to be normally distributed

ru ∼N (0, σ2
i ), where σi is the standard deviation of the image

noise.

The dense image-to-model alignment approach computes

the pose Tk,w of the synthetic image Is, which minimizes

the residual with the actual image and, hence, the pose of
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(a) (b)

Fig. 5: Figure 5(b) shows the information gain related to the scene
in 5(a) (Figure 11.a) in the case of fixed height.

the robot. Due to the nonlinearity of the problem, we assume

that we have an initial guess of the pose T̂k,w and iteratively

compute update steps ξ∧ ∈ se(3)

T̂k,w ← exp(ξ∧)T̂k,w (15)

that minimize the residual. The update step minimizes the

following least-squares problem

ξ = argmin
ξ

∑

u∈Ωs

1

2σ2
i

[

Ik(u
′)− Is(π(p

′
u(T̂k,w)))

]2

(16)

with pu given by (12), p′
u as in (13), and

u′ = π
(

p′
u(exp(ξ

∧))
)

. (17)

Addressing the least-squares problem (16) using the Gauss-

Newton method leads to the normal equations that can be

solved for ξ:

JTJξ = −JT r, (18)

where J and r are the stacked Jacobian and image residuals

of all pixels u ∈ Ωs respectively.

Specifically, the least-squares minimization requires the

computation of the Jacobian of the residual in (16) at each

pixel u, which can be written as a function of the gradient in

the observed image and the synthetic depthmap1:

Ju =
(

∇Ik(u)
)T ∂π(b)

∂b

∣

∣

∣

∣

b=p′

u

∂p′
u

(

exp(ξ∧)
)

∂ξ

∣

∣

∣

∣

ξ=0

(19)

In this work, for sake of simplicity, we assume depth un-

certainty to be zero. However, non-zero values can easily be

integrated into our framework.

At the convergence of the optimization, the quantity

Λk =
1

σ2
i

JTJ (20)

is the Fisher Information Matrix [33] and its inverse is the

covariance matrix ΣIk of the measurement update.

According to [29], we find the covariance matrix after the

measurement update at time k by computing

Σk,w ←
(

Λ−1

k + J−TΣk,wJ
−1

)−1

, (21)

where the “left-Jacobian J is a function of how much the

measurement update modified the estimate. Note that the

information is not only a function of the image gradient

1see Appendix B in [32] for a detailed derivation of the exponential map
Jacobian computation.

but also of the depth at every pixel (see last term in (19)).

However, the uncertainty in the orientation is only a function

of the texture and independent of the depth.

Solving the dense image-to-model alignment optimization,

allows us to estimate the camera pose during execution of

the trajectory, by means of iteratively synthesizing synthetic

images from the environment model, and to refine the align-

ment. However, during planning, the location of viewpoints

evaluated along a trajectory is known and only the compu-

tation of the uncertainty in (21) is relevant. Therefore, the

photometric information Λk can directly be incorporated into

the pose covariance with Equation (21).

Given the information matrix in (21), we define the pho-

tometric information gain as tr(Λk). Figure 5(b) depict the

photometric information gain map for the scenario in Figure

5(a).

IV. PLANNING UNDER UNCERTAINTY

Thanks to the propagation framework described in the previ-

ous sections, we are able to predict the pose uncertainty after

sequences of camera motions. Furthermore, we can update

the pose covariance according to the expected photometric

information gain computed with the dense image-to-model

alignment strategy presented in Section III-C. To compute the

optimal path we need to evaluate all possible trajectories and

we need to do that efficiently. In the following, we describe

how the sequence of viewpoints that minimize the localization

uncertainty is selected with low complexity. Furthermore, as

we do not assume to have any given prior knowledge about

the scene, the photometric information of the environment, as

well as its 3D geometry, are unknown. Hence, the trajectory

that is considered optimal in the beginning will be adapted as

new information is gathered by the robot.

As stated in the previous sections, RRT* provides an

efficient framework to efficiently compute trajectories. Nev-

ertheless, in its original formulation, the RRT* does not take

into account the pose uncertainty.

To benefit from the RRT* advantages and overcome its

limitations, we adapt this framework in the next section to

our scenario, proposing a cost function that encodes both the

distance term and the amount of uncertainty associated with

a candidate path.

A. Perception-aware RRT*

At a high level, the rapidly-exploring random trees algo-

rithm explores the state space to compute the optimal path T
from the start location to each point in the space. In particular,

the tree is composed of a set of vertices V representing

elements of the state space along with their associated pose

covariances. Each vertex v ∈ V has a list of neighboring

vertices v.N , a state v.x, where x ∈ SE(3), a state covariance

v.Σ, a cost value v.c, a unique parent vertex v.p, and the

photometric information gain v.Λ associated to the camera

viewpoint at v.x. Figure 6 depicts the properties of the tree.

The graph is incrementally built by sampling new states

and connecting them to the existing vertices, propagating the

covariances towards the new one. Furthermore, since each
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(a) Standard RRT* - 10 steps (b) Standard RRT* - 500 steps (c) Standard RRT* - 2500 steps

(d) Perception-aware RRT* - 10 steps (e) Perception-aware RRT* - 500 steps (f) Perception-aware RRT* - 2500 steps

Fig. 7: Evolution of the optimal policy tree after different iterations. From left to right, we plot the state of the tree respectively after 10, 500
and 2500 sampling steps. In 7(a)-7(c) the planner follows the standard RRT* strategy, i.e., the shortest path, without taking into account the
information from the vision sensor. By contrast, our framework 7(d)-7(f) computes trajectories that attempt to minimize the pose uncertainty
using the photometric information gain.

Fig. 6: Example of a tree configuration. The green arrows connect
different vertices in the tree. Each leaf has a unique path to the
root. The blue circle includes all the vertexes affected by the rewire
procedure when a new element is sampled and added in the tree. The
vertex v is expanded to show the properties of each node.

location x is associated with a view and a depth map, we

can anticipate what the robot will see in a specific position

and compute the associated photometric information gain. The

algorithm makes use of the dense image-to-model alignment

strategy, presented in Section III-C, to compute the predicted

information gain and update the pose covariance accordingly.

Each nominal trajectory Ti ∈ P is described by a sequence

of Ni waypoints vij , where each of them is a vertex of the

tree. To solve the problem of finding the plan that represents

the best trade-off between path length and pose estimation

accuracy, we propose a cost function that weighs both the

distance between waypoints, and the pose covariances. Among

all the candidate paths P , we select the trajectory Ti ∈ P that

minimizes the following function:

J(Ti) =
Ni
∑

j=1

α Dist(vij .x, v
i
j−1.x) + (1− α) tr(vij .Σ) (22)

where α is the trade–off factor between path length minimiza-

tion and information maximization, and Dist(·, ·) computes

the distance between the two locations. It should be noticed

that, by choosing to minimize the sum of the trace of all

the pose covariances, we suggest the algorithm to seek the

trajectory that keeps small the camera pose uncertainty along

the candidate path. We choose the trace to include the visual

information into the cost function following the considerations

in [34]. In particular, minimizing the trace of the pose co-

variance matrix (A-optimality) guarantees that the majority

of the state space dimensions is considered (in contrast to

the D-optimality), but does not require us to compute all the

eigenvalues (E-optimality).

Algorithm 1 describes the proposed Perception-aware

RRT*. At each iteration, the algorithm samples a new state

from the state space, then it creates and adds the associated

vertex to the tree. After that, the vertices near the new one are

selected through the function Near(). This function looks for

the vertices whose states are within a ball of radius ρ, defined

as follows (see [9]):

ρ ∝

(

log(n)

n

)
1

d

. (23)

In the above equation, the radius depends on the dimension of
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Algorithm 1 Perception-aware RRT*

01: Init: Initial vertex v0.x = xinit; v0.p = root;
Initial pose covariance v0.Σ = Σ0; Initial cost v0.c = 0;
Initial Vertex set V = {v0}; Number of iterations T ;
Collision radius c

02: for t = 1, . . . , T do
03: xnew = Sample()
04: vnst = Nearest(xnew)
05: if ObstacleFree(vnew, vnst, c)
06: Σt = Propagate(vnst.x, vnst.Σ, vnew.x)
07: Σt = Update(Σt, vnew.Λ)
08: Jmin = vnst.c+ (1− α) tr(Σt) + αDist(vnst.x, vnew.x)
09: vmin = vnst

10: V = V ∪ v(xnew)
11: Vneighbors = Near(V, vnew)
12: for all vnear ∈ Vneighborsdo
13: if CollisionFree(vnear, vnew, c)
14: Σt = Propagate(vnear.x, vnear.Σ, vnew.x)
15: Σt = Update(Σt, vnew.Λ)
16: if vnear.c+ (1− α) tr(Σt)

+αDist(vnear.x, vnew.x) < Jmin

17: Jmin = vnear.c+(1−α) tr(Σt)+αDist(vnear.x, vnew.x)
18: vnew.Σ = Σt

19: vnew.c = Jmin

20: vmin = vnear

21: end if
22: end if
23: ConnectVertices(vmin, vnew)
24: end for
25: RewireTree()
26: end if
27: end for

the state d and on the number of state vertices n. It is important

to notice that, before checking for adjacent vertices, the

function Nearest() selects the nearest node without checking

if it is inside the ball of radius ρ. This is required especially

during the first iterations, when the tree is very sparse and,

thus, the Near() function can easily return an empty list. The

new vertex is then connected along a minimum cost path to

one of the neighbors (lines 10-23). In particular, for each

element in the neighborhood we first check whether there

is a safe connection between the two vertices, i.e., whether

there are any collisions along the path. The collision radius

c (see Algorithm 1) depends on the geometrical structure of

the robot and is provided as an input parameter. Afterwards,

the pose uncertainty associated with the current vnear vertex is

propagated using (9) and updated according to the photometric

information gain expected from receiving an image measure

when reaching the state xnew. Finally, we check whether the

overall cost of connecting vnear to vnew (which represents the

cost of the candidate path T through those waypoints) is

smaller than the current minimum, and update it if necessary.

In the final stage of the algorithm, we update the tree

connections following the strategy proposed in [9]: the vertices

in the neighborhood are visited, updating their parent relation-

ships in the tree if the path through vnew is more convenient.

This procedure is referred as RewireTree().
The output of the overall procedure is a connected tree,

from which we can extract the optimal policy to a generic

goal vertex following the parent relationships from the final

Algorithm 2 Online perception-aware RRT*

01: while 1 do
02: UpdateCollisionMap()
03: UpdatePhotometricInformationMap()
04: Vcolliding = NewCollidingVertices()
05: InvalidateSubTree(Vcolliding)
06: Run PerceptionAwareRRT* 1
07: Vinf = UpdatedVertices()
08: for all vinf ∈ Vinfdo
09: Λv = Λnew

v

10: RewireTree()
11: end for
12: end while

to the start state. Figure 7 shows the evolution of the tree at

different iteration steps and compares the standard RRT* with

our perception-aware formulation.

B. Online Perception-aware Planning

Given an initially optimal path, we can now start exploring

the environment. When new parts of the scene are revealed,

the current trajectory might become non-optimal or even

infeasible in case of obstacles. One possibility would be to

recompute the tree from scratch after every map update but

this would be costly and computationally intractable to have

the system integrated into an MAV application. For this reason,

we propose to update the planning tree on-the-fly by only

processing vertices and edges affected by new information.

This online update is illustrated in Figure 8 and its fundamental

steps are depicted in Algorithm 2.

Consider an initial planning tree as in Figure 8(a), that is

grown from a starting point (indicated by a green circle) to a

desired end point location (the red circle). Whenever a new

obstacle is spotted, the respective edge and the affected subtree

get invalidated and regrown (lines 04-06) as in Figure 8(b).

Note that the SampleUnexplored() function is now

bounded within the subspace corresponding to the invalidated

subtree, which results in a drastically reduced number of itera-

tions compared to fully regrowing the RRT* tree from scratch.

The second scenario in Figures 8(d) to 8(f) demonstrates the

case of gaining areas with distinctive photometric information.

As newly discovered areas provide photometric information, as

shown in Figure 8(e), the neighboring vertices are updated by

the RewireTree() procedure (lines 07-10 in Algorithm 2).

Potentially better connections are considered to form a new

path with lower costs (Figure 8(f)).

V. EXPERIMENTS

To validate the proposed method, we run experiments

assuming both known and unknown scenarios. The formers

(Section V-A) aim to to show how, in contrast to standard

strategies, our perception-aware path planner selects trajecto-

ries that favor highly-textured areas. In the latter ones (Section

V-B) we demonstrate the capability to adapt the perception-

aware plan in an online fashion as new information is available

from the environment. Furthermore, we test our approach

within a complete visual navigation system that explores,
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(a) (b) (c)

(d) (e) (f)

Fig. 8: Online update steps during exploration: Figures (a)-(c)
depict the subtree invalidation and rewiring update when an obstacle
is spotted, while (d)-(f) show how the tree is rewired when new
photometric information is available from the scene.

localizes itself and computes trajectory considering the visual

information from the scene.

A. Experiments in Known Scenarios

We evaluate the approach in both simulated and real scenes.

In the simulated experiments, we used Blender to generate

photorealistic, textured scenes and render images with the

associated depth maps. We assume a down-looking camera

in both simulated and real scenarios. In contrast to the exper-

iments in the following sections, here we assume to have full

knowledge about the map and the texture in the scene.

Our framework can handle 6DoF state representations

(i.e., (x, y, z, ρ, φ, θ)). However, since we assume flight

in near-hover conditions, without loss of generality, we

can omit the roll and pitch angles (i.e., ρ = 0, φ = 0).

Furthermore, since the orientation angle θ does not affect the

information-gain computation with down-looking camera, we

can also omit θ (in the experiments in unknown scenarios,

described in Section V-B, we consider also the front-looking

configuration, i.e.we plan including the yaw angle).

1) Simulation Results: We set up two different simulation

scenarios to prove that our approach can effectively compute

the optimal trajectory with respect to the uncertainty reduction.

In particular, we discuss the effect of the trade-off factor α

(22) on the computed path. In the first experiment (Figure 9),

the scene is divided into two areas: the first one textureless

and the second one with texture. The second scenario (Figure

10) contains texture that only reduces the uncertainty along

one dimension, e.g., with zero intensity gradient along specific

directions. In particular, the scene is characterized by black

and white stripes along the x and y directions. This test is

(a) α = 0.9 (b) α = 0.1 (c) α = 0.4

Fig. 9: Results of the experiment with two textures. The images
are extracted from the graphical interface of the planner where the
measures are displayed as a colored point cloud. The green arrows
indicate the optimal path. The experiments with α =0.9, 0.1 and 0.4
are shown from left to right. The first row shows the top view above
the scene and in the second one we depict the image from the down-
looking camera acquired at an intermediate pose along the trajectory.
In the third row a 3D perspective view is depicted.

designed to demonstrate how our approach predicts the pose

uncertainty specifically for each state dimensions and plans

accordingly.

For each simulated scenario, we render images at different

locations. This way, we can compute the photometric infor-

mation gain with different camera viewpoints and update the

predicted pose covariance along the trajectory.

In the first test (Figure 9), the space is limited to a

10 × 10 meter area. The states (x, y, z) = (0.0, 0.0, 2.0) and

(x, y, z) = (2.0, 9.0, 2.0) are chosen respectively as the start

and the goal state. We split the scenario in two areas: the first

is textureless, while the second one is highly-textured. For this

experiment we keep the camera height at 2 meters above the

ground. As the start and the goal state are both located in the

white zone, selecting a straight trajectory that only minimizes

the distance leads to a viewpoint sequence without texture.

We run three tests setting the parameter α to 0.9, 0.1 and

0.4, respectively. In the first one, the planner penalizes long

paths, while in the second one a higher cost is associated

to trajectories with high uncertainty. Finally, in the last one,

the computed trajectory is a trade-off between localization

accuracy and trajectory length.

Figure 9 shows that in the case α = 0.9, the planner

correctly selects the trajectory close to the shortest one (i.e.,

a line). In the second case α = 0.1, the optimal viewpoint

sequence includes the textured area, to keep the uncertainty

small as long as possible along the path. Finally, in the case

α = 0.4 the computed path keeps the pose covariances small,

but, since more weight is given to the distance term in the cost

function, the planner reduces the trajectory length as much as

possible.

Within the second simulation (see Figure 10), we demon-

strate how the proposed approach seeks to maximize the

information gain along all dimensions of the space domain.

As explained in section IV-A, we can achieve this behavior

through the proposed cost function, which tries to minimize

the sum of the traces of the pose covariances.
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(a) (b) (c) (d)

Fig. 10: Uncertainty propagation samples from the computed optimal policy. In this test α is set to 0.1 In the first row the red cloud
indicates the covariance at the given position, while in the second row the camera image rendered in that position is displayed. In the second
and in the third column is it possible to see how the uncertainty is reduced first along the x axis and then along the y and the z axes.

In this case the space is constrained to a 20 × 20 meter

area. The start state is still set at (x, y, z) = (0.0, 0.0, 2.0)
and the final state is (x, y, z) = (5.0, 19.0, 2.0). The simulated

scenario is composed of three types of texture: one completely

white and the remaining two with black and white stripes

along the y and the x axes respectively. Furthermore, we

set α = 0.1, i.e., we look for the path that minimizes the

uncertainty. Figure 10 shows the resulting optimal path. The

planner suggests first reaching the area with the stripe along

the y axis, then navigating to the stripe along the x axis to

minimize the uncertainty along both directions. Furthermore,

as shown in Figure 10, we can also reduce the uncertainty

of the z dimension. When two gradients with known relative

position are available we can gain information about the depth.

In Table I we also report the comparison between the

trajectory length and the trace of the pose covariance matrix

for different values of α. In particular, we run tests in the

two scenarios varying α from 0.05 to 0.95 with a 0.1 step.

We perform 10 runs per tests averaging the trajectory length,

the mean trace along the path, and the trace at the goal

location. In the first test, as we give more importance to the

pose uncertainty minimization, the length of the trajectories

varies between 9.21 m and 12.91 m, while the mean and the

goal state traces are reduced. The results vary almost linearly

because the optimal trajectory changes smoothly between

a straight towards the goal (shorter paths) and two almost

orthogonal segments (safer paths), as we change the value of

α. Conversely, in the second experiment we can observe three

different behaviors. When more importance is given to the

trajectory length, the planner selects a straight path towards

the goal (over the area with no texture), thus, the uncertainty

is very high. On the other hand, with small α values, the

trajectories selected are similar to the one depicted in Figure

10. However, when α is between 0.35 and 0.65, the planner

computes paths that reach only the first black stripe, without

going over the black squares on the other side of the space.

In this way, it is not possible to reduce the uncertainty with

respect to the y axis, but the trajectory is shorter.

2) Real Experiments: While simulated scenarios are well-

suited to demonstrate the capabilities of the proposed frame-

work, a real-world experimental setup is important to prove

the effectiveness of the approach in actual environments. The

3D surface model of the scene was computed using a Faro 3D

laser scanner2 to gather a fine-grained point cloud representa-

tion of the scenario. After recording the scans, we generated

the state space and computed trajectories given different start

and goal points. In addition, we used a quadrotor with a down-

looking camera to perform the computed trajectories.

We set up two scenarios to test our approach with different

texture and object arrangements. For each scenario, a full 3D

scan of the room was acquired. Figure 11 shows different

scenario setups during scan acquisitions.

In the first configuration, shown in Figure 11(a), the scene

is left without texture on the floor, apart from the area

near the walls, where we added highly-textured boxes and

carpets (Figure 5(b) shows the photometric information gain

at different locations in the scene). The start position is set

close to the room door, while the goal position is located in the

opposite corner of the room. We compare the standard RRT*

planner (α = 1.0) with our Perception-aware RRT* using

two different configurations: in the first one, more importance

is given to pose-uncertainty minimization (α = 0.1); in the

second one, the planner is asked to select the trajectory that

also favors short path lengths (α = 0.3). As shown in Figure

12, while the obvious solution for the standard RRT* planner

is to go straight to the goal along the diagonal of the room

(see Figure 12(c)), our framework understands that it is not

the best path with respect to visual localization, as no texture

for sufficient pose estimation is available. In particular, when

α = 0.1, it selects the trajectory along the walls, retrieving

photometric information from the scenario. It should also be

noticed that setting α = 0.3 results in a path that keeps the

robot close to the walls to minimize the pose covariance while

2http://www.faro.com

(a) (b)

Fig. 11: Two different scenario setups in our laboratory.
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First Scenario (Figure 9) Second Scenario (Figure 10)

α Avg. Length [m] Avg. Mean Trace Avg. Goal Trace Avg. Length [m] Avg. Mean Trace Avg. Goal Trace

0.05 12.91 2.1 1.0 40.12 7.60 9.05

0.15 12.91 3.56 1.5 40.45 7.75 9.25

0.25 11.50 6.4 1.8 40.23 7.23 9.28

0.35 11.05 9.05 4.0 23.36 35.23 18.35

0.45 11.05 9.12 3.87 23.33 37.11 17.98

0.55 11.04 10.36 4.23 23.45 36.59 19.12

0.65 10.5 25.4 8.34 23.5 38.67 18.81

0.75 9.89 30.22 18.45 19.67 65.61 76.34

0.85 9.67 30.67 18.12 19.63 67.04 78.24

0.95 9.21 30.5 19.09 19.64 69.12 79.67

TABLE I: Comparison between the trajectory length and the pose uncertainty for different α values.

(a) α = 0.1

(b) α = 0.3

(c) α = 1.0

Fig. 12: Results of the first scenario tests in a real environment. Each row shows the computed optimal path for each planner parametrization.
In particular 12(a) and 12(b) depict the computed trajectories with α = 0.1 and α = 0.3, while 12(c) displays the standard RRT* output
(α = 1.0). The first two columns from the left show two different perspective views of each trajectory in the scenario, while in the rightmost
column depicts the interpolated trajectory in red.

at the same time reducing the path length as much as possible.

Thus, compared to the α = 0.1 experiment, the trajectory is

shorter but with a less accurate pose estimation.

The last scenario, shown in Figure 11(b), was set with some

boxes with uniform color in the center of the room and with

texture-rich carpets and boxes along the walls. The start and
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(a) Perception-aware RRT*

(b) Standard RRT*

Fig. 13: The trajectories computed in the second scenario experiment. Our Perception-aware RRT* with α = 0.1 13(a) is compared with
the standard RRT* 13(b).

the goal states are the same as in previous scenarios. Our

Perception-aware planner with α = 0.1 is again compared with

the standard RRT* approach. The minimum-length trajectory

(i.e., the output of the RRT* planner) is obtained selecting

viewpoints over the boxes in the middle of the room (see

Figure 13(b)). However, this path is poor in photometric

information, thus, the strategy implemented by our approach

chooses a trajectory along the walls, circumventing the central

boxes and keeping the quadrotor height low to maximize the

uncertainty reduction (cf. Figure 13(a)). Inspecting the results

in Figure 13, it can be seen that our planner increases the

height in some parts of the trajectory. Although, in general,

higher depth values reduce the photometric information for

the translational components, higher waypoints have larger

scene coverage. In this scenario, as some parts of the scene are

poor in texture, photometric information increases with height

because this boosts the possibility of acquiring richer texture

from other areas.

Finally, in Figures 14 and 15 we compare the pose co-

variance estimates relative to the trajectories computed with

the standard RRT* and the proposed Perception–aware RRT*.

The plots clearly show that we can effectively reduce the

pose uncertainty by selecting paths over highly-textured areas.

Conversely, since the standard RRT* planner does not take into

account any photometric information, the resulting trajectories

provide a small amount of texture to the visual localization

system and, thus, they are characterized by larger covariance

values.

B. Experiments in Unknown Scenarios

In this section we discuss the experiments in unknown

scenarios. We first describe the architecture of the visual

navigation system that performs online localization, map

reconstruction and planning. Afterwards, we present the

results achieved in both simulated and real environments.

1) System Overview: We consider an MAV that explores

an unknown environment by relying only on its camera to

perform localization, dense scene reconstruction and optimal

trajectory planning. We have integrated the online perception-

aware planner with two different mapping systems (see Figure

16): a monocular dense reconstruction system that generates

a point cloud map, and a volumetric system that uses stereo

camera input.

In the monocular system, the localization of the quadrotor

runs onboard, providing the egomotion estimation to perform

navigation and stabilization. To achieve real-time performance,

the dense map reconstruction and the online perception-aware

path planning runs off-board on an Intel i7 laptop with a GPU,

in real-time.

At each time step k, the quadrotor receives a new image

to perform egomotion estimation. We use the Semi-direct

monocular Visual Odometry (SVO) proposed in [4], which

allows us to estimate the quadrotor motion in real-time.

The computed pose Tk,w and the relative image are then

fed into the dense map reconstruction module (REMODE

[35], a probabilistic, pixelwise depth estimator to compute

dense depthmaps). Afterwards, the dense map provided by

the reconstruction module is sent to the path planning module

and is used to update both the collision map (using Octomap

[36]) and the photometric information map. The last one is

then used to update Λv for each vertex affected by the map

update. Finally, we update the optimal trajectory following the

procedure described in Algorithm 2.

For the textured volumetric map system, we take input from

a stereo camera, perform egomotion estimation with SVO

as above, and compute a dense depth map with OpenCV’s

Block Matcher. The estimated camera pose from SVO and

the point cloud produced from the depth map are used to

update a textured OctoMap. This volumetric map serves as a

collision map, when it is queried for occupancy, and is used

to synthesize views and compute photometric information
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(a) Standard RRT* (b) Perception-aware RRT*

Fig. 14: Pose estimation uncertainties plotted for each experiment.
The figure compares the standard planner output 14(a) with the
proposed perception-aware results 14(b). The covariances and the
sequences of viewpoints computed with the standard RRT* are
pictured in orange, while the perception-aware RRT* is depicted in
blue. From top to bottom, the figure shows the computed trajectories
in the two scenarios.

Fig. 15: Comparison of the pose covariance estimates along the
trajectories computed with the standard RRT* and our perception-
aware RRT*. The plot at the top depicts the comparison of the
pose covariance trace for the first scenario (see Figure 11(a)), while
the bottom one shows the results of the experiments on the second
scenario (see Figure 11(b)). Despite the Standard RRT* trajectories
are shorter, the pose covariance uncertainty along the paths is
significantly higher than our perception-aware RRT*.

gain during planning, when it is queried for texture. This

pipeline runs in real time onboard an MAV’s embedded single

board computer (an Odroid XU3 Lite) using a map with 5cm
resolution, and with the input images downsampled by a

factor of 4 to 188×120, and throttled down to 1Hz. However,

we evaluate this system in simulation, and for the experiments

in Sec. V-B3, we run the simulation, visual pipeline, planner,

and control software all on a laptop with an Intel i7 processor.

2) Real Experiments: Before presenting the experimental

results, we motivate our approach by discussing how the

photometric information distribution changes over time when

exploring an unknown environment. Figure 17 shows the map

Fig. 16: Block diagram of the online perception-aware planning
system.

(a)

(b)

(c)

Fig. 17: Three different exploration stages of a scene (rows). The
first column shows the scene layout, the second column the collision
map and the third the computed photometric information gain.

for collision avoidance and the photometric information gain

at different exploration stages. In the photometric information

map, warm (yellowish) colors refer to camera viewpoints

exhibiting a higher amount of texture, while the cool (bluish)

ones indicate less informative areas. In Figure 17(a) the

almost unexplored scene has very little valuable information

to compute a reliable trajectory. Hence, standard planners, that

calculate trajectories only once (without performing online

updates), compute sub-optimal trajectories or even collide with

undiscovered objects. Therefore, an online approach is needed

to integrate the information from newly unexplored areas

and re-plan accordingly. While exploring, the collision map

and photometric information get updated (see Figures 17(b)

and 17(c)) and become useful to update the optimal trajectory.

For the experiment in unknown real scenarios, we set up

three scenarios with different object and carpet arrangements

to vary the texture and the 3D structure of the scene. In the first

scenario, the camera on the MAV is downward-looking, while

in the last one choose a front-looking configuration with an

angle of 45 degrees with respect to the ground plane. We made

experiments with two different camera setups to investigate the

influence of the camera viewpoint on the optimal trajectory
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computation. Intuitively, the front-looking configuration pro-

vides more information since also areas far from the quadrotor

are observed. Conversely, with the downward-looking config-

uration, the pose estimation algorithm is more reliable, but

less information is captured from the scene. Finally, in all the

experiments we set α = 0.1 to increase the importance of the

pose uncertainty minimization.

In all the scenarios, we put highly-textured carpets along

the walls, while the floor in the center of the room is left

without texture (i.e., with a uniform color). We also place some

boxes on the carpets and near the walls. In the first scenario,

we also put an obstacle in the center of the room. At the

beginning of the exploration, the planner shows a behavior

similar in all the experiments (see Figures 18(a), 18(d) and

18(g)). The information about the scene is very low, thus, our

approach computes a simple straight trajectory to the goal. As

the robot explores the environment, the trajectory is updated by

preferring areas with high photometric information. In the first

scenario, we can observe that, since a new obstacle (a box near

the center of the room) is spotted at the end of the exploration,

the previous trajectory (cf. Figure 18(b)) is invalid and a new

collision-free one is computed (see Figure 18(c)). However,

to guarantee the availability of photometric information, our

approach correctly suggests to fly over the textured boxes and

not toward the center of the room.

A front-looking camera configuration (second and third

scenario) provides photometric information about areas distant

from the current MAV pose. As a consequence, we can obtain

an optimal trajectory, with respect to pose uncertainty

minimization, earlier with respect to the previous experiment

(see Figures 18(e), 18(f), 18(h) and 18(i)). In the final stage

of the exploration of the third scenario, the obstacles near the

goal are spotted (see Figure 18(i)). As a consequence, the

trajectory in Figure 18(h) is invalidated. Despite more texture

are available, flying over the top left corner of the room is

not anymore convenient due to the presence of the boxes

near the goal position. Therefore, our approach correctly

updates the trajectory. In this last experiment, we can also

observe that, even if the reconstructed map is noisy, our

approach correctly computes the best trajectory with respect

to the pose uncertainty minimization. Sparse methods would

be more affected by the reconstruction error compared to

the used dense image-to-model alignment strategy which can

effectively capture the photometric information.

3) Simulated Experiments: To further evaluate the perfor-

mance of our system in wider and more complex scenarios,

we also run tests in a simulated environment, using the

components described in Sec. V-B1. Two trials were performed

in environments simulated with Gazebo, one designed to

explicitly test perception (labyrinth) and one designed to

simulate a real world environment (kitchen). The labyrinth

scenario is designed with flat and highly-textured walls to test

the capability of our perception-aware planner to choose the

MAV orientations that maximize the amount of photometric

information. The quadrotor starts in one of the two long

corridors in the scene (see 19(a)) and is asked to reach the

goal location that is located at 25m from the start location. In

the kitchen world (see 19(d)), the MAV begins at a position

that is separated by two walls from the goal location, which

is 12.5m away. We compare the performance of the standard

RRT* planner and our perception-aware planner in Figs. 19

and 20.

4) Discussion: The qualitative results shown for the real

world (Fig. 18) and simulated (Fig. 19) experiments show that

the perception-aware planner does indeed choose trajectories

that allow the MAV to observe more photometric information.

Quantitatively, this results in a dramatic improvement in the

uncertainty of the vehicle’s pose estimate. The results in Fig.

20 show that the pose uncertainty, measured as the trace of the

covariance matrix and visualized as ellipses in Fig. 19, is up

to an order of magnitude smaller when the planner considers

the texture of the environment.

In both of the simulated experiments, the RRT* and percep-

tion aware planners both reached the goal location in all trials.

On average, for the labyrinth it took 718s and 715s, respec-

tively, and for kitchen it took 578s and 580s, respectively. The

results are shown in Figs. (19(b)) and 19(c) for the labyrinth

tests and in Figs. 19(e) and 19(f) for the kitchen ones. The

most important distinction in this performance comparison is

the pose uncertainty across the trajectory. The two planners

produce similar trajectories in terms of waypoint positions, but

the covariances for the RRT* trajectory are much larger due

to the desired yaw angles that are chosen for the waypoints.

The proposed perception aware planner specifically optimizes

the waypoint position and yaw angle (i.e. where to look) in

order to minimize this pose uncertainty. As a consequence, the

trajectory computed with our strategy has low pose uncertainty

values, while the RRT* trajectory, which does not consider the

visual information, leads to very low localization accuracy,

which can make the navigation infeasible due to the high risk

of collisions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we gave a new double twist to the problem of

planning under uncertainty by proposing a framework (called

Perception-aware Path Planning) to incorporate the photomet-

ric information of a scene, in addition to geometric one, to

compute trajectories with minimum localization uncertainty

of vision-control robots in goal-reaching tasks.

To avoid the caveats of feature-based localization systems

(i.e., dependence of feature type and use-defined thresholds),

we proposed to use dense, direct methods to compute the

Fisher information matrix directly from the intensity values

of every pixel in the image. We used Lie-Group-based propa-

gation to approximate the localization uncertainty up to the

fourth order. Finally, we proposed to adapt trajectories in

an online fashion, considering also scenarios with no prior

knowledge about the map.

The proposed framework is general and can easily be

adapted to different robotic platforms and scenarios. As an

application, we showed how the proposed framework can be

adapted to the well known RRT* planner.

The proposed framework was validated in both real and

simulated environments. Finally, we presented the integration
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 18: Experimental results in three real scenarios (rows). The first column shows the initially computed trajectories, only having little
information of the environment available. The second and third column demonstrate the update of the trajectory as new information is
gathered by updating the scene.

and demonstration of the overall system into a real quadro-

copter performing vision-based localization, dense map recon-

struction, and online perception-aware planning. The results

clearly show that our framework can generate trajectories that

outperforms standard path-planning approaches in terms of

vision-based localization accuracy.
We believe that this will translate into safer trajectories for

vision-controlled robots. Future work will investigate solutions
to predict the photometric information gain in unexplored
areas using past knowledge. This way, we will be able to
reach better estimates of the optimal trajectory even before
discovering all the scene elements. Finally, we plan to include
dynamic constraints and control effort in the optimization
process to generate smoother trajectories.
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